Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(28): 15435-15442, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37421307

RESUMO

Metal-organic frameworks (MOFs) have emerged as excellent platforms possessing tunable and controllable optical behaviors that are essential in high-speed and multichannel data transmission in optical wireless communications (OWCs). Here, we demonstrate a novel approach to achieving a tunable wide modulation bandwidth and high net data rate by engineering a combination of organic linkers and metal clusters in MOFs. More specifically, two organic linkers of different emission colors, but equal molecular length and connectivity, are successfully coordinated by zirconium and hafnium oxy-hydroxy clusters to form the desired MOF structures. The precise change in the interactions between these different organic linkers and metal clusters enables control over fluorescence efficiency and excited state lifetime, leading to a tunable modulation bandwidth from 62.1 to 150.0 MHz and a net data rate from 303 to 363 Mb/s. The fabricated color converter MOFs display outstanding performance that competes, and in some instances surpasses, those of conventional materials commonly used in light converter devices. Moreover, these MOFs show high practicality in color-pure wavelength-division multiplexing (WDM), which significantly improved the data transmission link capacity and security by the contemporary combining of two different data signals in the same path. This work highlights the potential of engineered MOFs as a game-changer in OWCs, with significant implications for future high-speed and secure data transmission.

2.
Opt Express ; 31(25): 41361-41373, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087537

RESUMO

Vertical-cavity surface-emitting lasers (VCSELs) are widely used as light sources for high-speed communications. This is mainly due to their economical cost, high bandwidth, and scalability. However, efficient red VCSELs with emissions at 650 nm are required for plastic optical fiber (POF) technology because of the low-loss transmission window centered around this wavelength. This study investigates using 650-nm red VCSEL arrays in interconnected systems for POF communication to improve signal quality and increase data rates. The experimental results show that using one red VCSEL with a -3-dB bandwidth of 2 GHz in POF communication can achieve data rates of up to 4.7 Gb/s with 2 pJ/bit power efficiency using direct current-biased optical orthogonal frequency-division multiplexing (DCO-OFDM). The bit error ratio (BER) is 3.6×10-3, which is less than the hard-decision forward-error correction (FEC) limit of 3.8 × 10-3. In addition, temperature dependence measurements of the VCSEL have been presented from 15 ∘C to 38 ∘C. The essential parameters of VCSEL have also been measured: the maximum optical power is 2.5 mW, and the power conversion efficiency is 14%.

3.
Opt Express ; 31(16): 25385-25397, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710427

RESUMO

Optical wireless communication (OWC) links suffer from strict requirements of pointing, acquisition, and tracking (PAT) between the transmitter and receiver. Extending the narrow field-of-view (FoV) of conventional light-focusing elements at the receiver side can relax the PAT requirements. Herein, we use all-inorganic CsPbBr3 nanocrystals (NCs) to extend various optical concentrators' FOV to 60°, regardless of the original FOV values of the concentrators. Given the robustness of UV light against communication channel misalignment, the used CsPbBr3 NCs provide another advantage of converting transmitted UVC light into a green color that matches the peak absorption of the widely available Si-based detectors. We evaluated the feasibility of the reported wide FoV optical detectors by including them in deep UV OWC systems, deploying non-return-to-zero on-off keying (NRZ-OOK) and orthogonal-frequency division multiplexing (OFDM) modulation schemes. The NRZ-OOK and OFDM schemes exhibit stable communication over the 60° FoV, providing data transmission rates of 100 Mb/s and 71.6 Mb/s, respectively, a unique capability to the reported design.

4.
Opt Express ; 31(20): 32516-32528, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859053

RESUMO

The last decade has witnessed considerable progress in underwater wireless optical communication in complex environments, particularly in exploring the deep sea. However, it is difficult to maintain a precise point-to-point reception at all times due to severe turbulence in actual situations. To facilitate efficient data transmission, the color-conversion technique offers a paradigm shift in large-area and omnidirectional light detection, which can effectively alleviate the étendue limit by decoupling the field of view and optical gain. In this work, we investigated a series of difluoroboron ß-diketonate fluorophores by measuring their photophysical properties and optical wireless communication performances. The emission colors were tuned from blue to green, and >0.5 Gb/s data transmission was achieved with individual color channel in free space by implementing an orthogonal frequency-division multiplexing (OFDM) modulation scheme. In the underwater experiment, the fluorophore with the highest transmission speed was fabricated into a 4×4 cm2 luminescent concentrator, with the concentrated emission from the edges coupled with an optical fiber array, for large-area photodetection and optical beam tracking. The net data rates of 130 Mb/s and 217 Mb/s were achieved based on nonreturn- to-zero on-off keying and OFDM modulation schemes, respectively. Further, the same device was used to demonstrate the linear light beam tracking function with high accuracy, which is beneficial for sustaining a reliable and stable connection in a dynamic, turbulent underwater environment.

5.
Appl Opt ; 62(31): 8261-8271, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037928

RESUMO

The development of multiple autonomous underwater vehicles (AUVs) has revolutionized the traditional reliance on a single, costly AUV for conducting underwater surveys. This shift has garnered increasing interest among marine researchers. Communication between AUV fleets is an urgent concern due to the data rate limitation of underwater acoustic communication. Laser-based underwater wireless optical communication (UWOC) is a potential solution once the link-establishing requirement between AUVs can be met. Due to the limited coverage area of the laser beam, the previous pointing, acquisition, and tracking (PAT) method is to quickly adjust the beam direction and search for the target according to the set scanning path. In response to these challenges, we propose a scalable laser-based link establishment method that combines the maneuvering of the AUV, the acoustic positioning, and the control of the optical system. Our proposed approach has consistently outperformed the existing PAT method in simulated environments, effectively establishing laser links. Importantly, we have successfully implemented our approach in machine experiments, confirming its practical applicability.

6.
J Am Chem Soc ; 144(15): 6813-6820, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35412323

RESUMO

Mixed-matrix membranes (MMMs) based on luminescent metal-organic frameworks (MOFs) and emissive polymers with the combination of their unique advantages have great potential in separation science, sensing, and light-harvesting applications. Here, we demonstrate MMMs for the field of high-speed visible-light communication (VLC) using a very efficient energy transfer strategy at the interface between a MOF and an emissive polymer. Our steady-state and ultrafast time-resolved experiments, supported by high-level density functional theory calculations, revealed that efficient and ultrafast energy transfer from the luminescent MOF to the luminescent polymer can be achieved. The resultant MMMs exhibited an excellent modulation bandwidth of around 80 MHz, which is higher than those of most well-established color-converting phosphors commonly used for optical wireless communication. Interestingly, we found that the efficient energy transfer further improved the light communication data rate from 132 Mb/s of the pure polymer to 215 Mb/s of MMMs. This finding not only showcases the promise of the MMMs for high-speed VLC but also highlights the importance of an efficient and ultrafast energy transfer strategy for the advancement of data rates of optical wireless communication.

7.
Opt Express ; 30(1): 53-69, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201194

RESUMO

The growing need for ocean monitoring and exploration has boosted underwater wireless optical communication (UWOC) technology. To solve the challenges of pointing, acquisition, and tracking (PAT) in UWOC technology, herein, we propose a 450-nm-laser/scintillating-fiber-based full-duplex (FD)-UWOC system for omnidirectional signal detection in real scenarios. The FD-UWOC system has a -3 dB bandwidth of 67 MHz with a low self-interference level of -44.59 dB. It can achieve a 250-Mbit/s data rate with on-off keying modulation scheme. The system's robustness was validated by operating over 1.5-m underwater channel with air-bubble-, temperature-, salinity-, turbidity-, and mobility-induced turbulence with a low outage probability. Under air-bubble-induced turbulence, the highest outage probability was 28%. With temperature-, salinity-, and turbidity-induced turbulence, the system performed adequately, showing a highest outage probability of 0%, 3%, and 4%, respectively. In mobile cases, the highest outage probability of the FD-UWOC system was 14%, compared to an outage probability of 100% without utilizing the fluorescent optical antenna. To further validate its robustness, a deployment test was conducted in an outdoor diving pool. The system achieved a 250-Mbit/s data rate over a 7.5-m working distance in the stationary case and a 1-m working range in the mobile case with a 0% outage probability. The scintillating-fiber-based detector can be employed in UWOC systems and would help relieve PAT issues.

8.
Opt Express ; 30(6): 9823-9840, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299397

RESUMO

The use of optical carrier frequencies will enable seamless data connection for future terrestrial and underwater internet uses and will resolve the technological gap faced by other communication modalities. However, several issues must be solved to propel this technological shift, which include the limitations in designing optical receivers with large detection areas, omnidirectionality, and high modulation bandwidth, mimicking antennas operating in the radio-frequency spectrum. To address this technological gap, herein, we demonstrate halide-perovskite-polymer-based scintillating fibers as a near-omnidirectional detection platform for several tens-to-hundreds of Mbit/s optical communication in both free space and underwater links. The incorporation of all-inorganic CsPbBr3 nanocrystals by engineering the nanocrystal concentration in an ultraviolet-curable polymer matrix ensures a high photoluminescence quantum yield, Mega-Hertz modulation bandwidth and Mbit/s data rate suitable to be used as a high-speed fibers-based receiver. The resultant perovskite polymer-based scintillating fibers offer flexibility in terms of shape and near-omnidirectional detection features. Such fiber properties also introduce a scalable detection area which can resolve the resistance-capacitance and angle-of-acceptance limits in planar-based detectors, which conventionally impose a trade-off between the modulation bandwidth, detection area, and angle of view. A high bit rate of 23 Mbit/s and 152.5 Mbit/s was achieved using an intensity-modulated laser for non-return-to-zero on-off-keying (NRZ-OOK) modulation scheme in free-space and quadrature amplitude modulation orthogonal frequency-division multiplexing (QAM-OFDM) modulation scheme in an underwater environment, respectively. Our near-omnidirectional optical-based antenna based on perovskite-polymer-based scintillating fibers sheds light on the immense possibilities of incorporating functional nanomaterials for empowering light-based terrestrial- and underwater-internet systems.

9.
Opt Lett ; 47(24): 6321-6324, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538428

RESUMO

We designed and tested a distributed acoustic sensing (DAS) that co-exists with optical communication over a two-mode fiber (TMF). In particular, we excited both linearly polarized (LP) modes, LP01 and LP11a, using a photonic lantern for simultaneous information signal transmission while collecting the backscattered Rayleigh light at the near end of the fiber to detect vibrations from a predetermined source. While transmitting data using on-off keying (OOK) or orthogonal frequency-division multiplexing (OFDM) modulation schemes, the optical fiber DAS offers high signal-to-noise ratio (SNR) values that are always larger than the minimum acceptable 2 dB SNR. In addition, as a proof-of-concept experiment, we report parallel sensing and OFDM transmission achieving a data rate of up to 4.2 Gb/s with a bit error rate (BER) of 3.2 × 10-3.

10.
Opt Express ; 29(23): 38014-38026, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808862

RESUMO

Extending the field-of-view (FoV) of underwater wireless optical communication (UWOC) receivers can significantly ease the need for active positioning and tracking mechanisms. Two bundle of scintillating fibers emitting at 430- and 488-nm were used to detect two independent signals from ultraviolet and visible laser sources. A zero-forcing approach to minimize inter-channel crosstalk was further implemented. A net aggregated UWOC data rate of 1 Gb/s was achieved using two wavelengths and a non-return-to-zero on-off keying scheme.

11.
Opt Lett ; 46(8): 1916-1919, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33857103

RESUMO

Photodetectors used in wireless applications suffer from a trade-off between their response speeds and their active areas, which limits the received signal-to-noise ratio (SNR). Conventional light-focusing elements used to improve the SNR narrow the field of view (FOV). Herein, we demonstrate a versatile imaging light-focusing element featuring a wide FOV and high optical gain using fused fiber-optic tapers. To verify the practicality of the proposed design, we demonstrated and tested a wide-FOV optical detector for optical wireless communication that can be used for wavelengths ranging from the visible-light band to the near infrared. The proposed detector offers improvements over luminescent wide-FOV detectors, including higher efficiency, a broader modulation bandwidth, and indefinite stability.

12.
Opt Express ; 28(7): 9111-9122, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225524

RESUMO

We demonstrated a high-speed 1×2 single-input and multiple-output (SIMO) diffuse-line-of-sight (diffuse-LOS) ultraviolet-C (UVC) solar-blind communication link over a distance of 5 meters. To approach the Shannon limit and improve the spectral efficiency, we implemented probabilistically shaped discrete multitone modulation. As compared to a single-input and single-output (SISO) counterpart, we observed significant improvement in the SIMO link in terms of the angle of view of the receiver and the immunity to emulated weather condition. A wide angle of view of ± 9° is achieved in the SIMO system, with up to a 1.09-Gbit/s achievable information rate (AIR) and a minimum value of 0.24 Gbit/s. Moreover, the bit error rate of the SIMO link in emulated foggy conditions is lowered significantly when compared to that of the SISO link. This work highlights the practicality of UVC communication over realistic distances and in turbulent environments to fill the research gap in high-speed, solar-blind communication.

13.
Opt Lett ; 45(3): 742-745, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004299

RESUMO

In this Letter, we demonstrate a novel distributed-feedback (DFB) InGaN-based laser diode with narrow-linewidth emission at ∼480nm (sky blue) and its application to high-speed visible-light communication (VLC). A significant side-mode suppression ratio (SMSR) of 42.4 dB, an optical power of ∼14mW, and a resolution-limited linewidth of ∼34pm were obtained under continuous-wave operation. A 5-Gbit/s VLC link was realized using non-return-to-zero on-off keying modulation, whereas a high-speed 10.5-Gbit/s VLC data rate was achieved by using a spectral-efficient 16-quadrature-amplitude-modulation orthogonal frequency-division multiplexing scheme. The reported high-performance sky-blue DFB laser is promising in enabling unexplored dense wavelength-division multiplexing schemes in VLC, narrow-line filtered systems, and other applications where single-frequency lasers are essential such as atomic clocks, high-resolution sensors, and spectroscopy. Single-frequency emitters at the sky-blue wavelength range will further benefit applications in the low-path-loss window of underwater media as well as those operating at the H-beta Fraunhofer line at ∼486nm.

14.
Opt Express ; 27(21): 30450-30461, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684293

RESUMO

Underwater wireless optical communication (UWOC) can offer reliable and secure connectivity for enabling future internet-of-underwater-things (IoUT), owing to its unlicensed spectrum and high transmission speed. However, a critical bottleneck lies in the strict requirement of pointing, acquisition, and tracking (PAT), for effective recovery of modulated optical signals at the receiver end. A large-area, high bandwidth, and wide-angle-of-view photoreceiver is therefore crucial for establishing a high-speed yet reliable communication link under non-directional pointing in a turbulent underwater environment. In this work, we demonstrated a large-area, of up to a few tens of cm2, photoreceiver design based on ultraviolet(UV)-to-blue color-converting plastic scintillating fibers, and yet offering high 3-dB bandwidth of up to 86.13 MHz. Tapping on the large modulation bandwidth, we demonstrated a high data rate of 250 Mbps at bit-error ratio (BER) of 2.2 × 10-3 using non-return-to-zero on-off keying (NRZ-OOK) pseudorandom binary sequence (PRBS) 210-1 data stream, a 375-nm laser-based communication link over the 1.15-m water channel. This proof-of-concept demonstration opens the pathway for revolutionizing the photodetection scheme in UWOC, and for non-line-of-sight (NLOS) free-space optical communication.

15.
Opt Express ; 26(10): 12870-12877, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801320

RESUMO

For circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen as a figure-of-merit for link performance in this investigation, which considers the effects of geometries, water turbidity, and transmission wavelength. The experiments suggest that path loss decreases with smaller azimuth angles, higher water turbidity, and shorter wavelength due in part to enhanced scattering utilizing 375-nm radiation. We highlighted that it is feasible to extend the current findings for long distance NLOS UWOC link in turbid water, such as harbor water.

16.
J Phys Chem Lett ; 15(11): 2988-2994, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38457267

RESUMO

Intermolecular charge transfer (CT) complexes have emerged as versatile platforms with customizable optical properties that play a pivotal role in achieving tunable photoresponsive materials. In this study, we introduce an innovative approach for enhancing the modulation bandwidth and net data rates in optical wireless communications (OWCs) by manipulating combinations of monomeric molecules within intermolecular CT complexes. Concurrently, we extensively investigate the intermolecular charge transfer mechanism through diverse steady-state and ultrafast time-resolved spectral techniques in the mid-infrared range complemented by theoretical calculations using density functional theory. These intermolecular CT complexes empower precise control over the -3 dB bandwidth and net data rates in OWC applications. The resulting color converters exhibit promising performance, achieving a net data rate of ∼100 Mb/s, outperforming conventional materials commonly used in the manufacture of OWC devices. This research underscores the substantial potential of engineering intermolecular charge transfer complexes as an ongoing progression and commercialization within the OWC. This carries profound implications for future initiatives in high-speed and secure data transmission, paving the way for promising endeavors in this area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA