Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Phys Chem Chem Phys ; 26(33): 22031-22040, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39109921

RESUMO

Graphitic germanium carbide (g-GeC) is a novel material that has recently aroused much interest. Porous g-GeC can be fabricated by forming a lattice of pores in pristine g-GeC. In this work, we systematically investigate the influence of creating pores within pristine g-GeC. The pores are passivated with hydrogen, nitrogen, and oxygen, with four supercell sizes. The electronic properties are calculated using the density functional theory (DFT) formalism, which revealed that hydrogen-passivated systems have bandgaps ranging from 1.80 eV to 1.93 eV. The corresponding ranges for the nitrogen- and oxygen-passivated systems are 1.21 eV to 1.58 eV, and 1.18 eV to 1.45 eV, respectively. The bandgaps are always smaller than that of the pristine g-GeC system, and they approach the pristine value for larger supercell sizes. The studied systems have charge-trapping clusters of states located above/below the valence/conduction bands, partially localized at the pore-edge atoms. Additionally, we explore the chelation doping of the N-passivated GeC nanomesh using transition metal (Ni, Pd, Pt) three-atom clusters. Interestingly, the doped systems are dilute magnetic semiconductors. The studied systems exhibit electronic properties that may be useful for sensing and spintronics.

2.
Environ Dev Sustain ; : 1-36, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36691418

RESUMO

Waste from electrical and electronic equipment exponentially increased due to the innovation and the ever-increasing demand for electronic products in our life. The quantities of electronic waste (e-waste) produced are expected to reach 44.4 million metric tons over the next five years. Consequently, the global market for electronics recycling is expected to reach $65.8 billion by 2026. However, electronic waste management in developing countries is not appropriately handled, as only 17.4% has been collected and recycled. The inadequate electronic waste treatment causes significant environmental and health issues and a systematic depletion of natural resources in secondary material recycling and extracting valuable materials. Electronic waste contains numerous valuable materials that can be recovered and reused to create renewable energy technologies to overcome the shortage of raw materials and the adverse effects of using non-renewable energy resources. Several approaches were devoted to mitigate the impact of climate change. The cooperate social responsibilities supported integrating informal collection and recycling agencies into a well-structured management program. Moreover, the emission reductions resulting from recycling and proper management systems significantly impact climate change solutions. This emission reduction will create a channel in carbon market mechanisms by trading the CO2 emission reductions. This review provides an up-to-date overview and discussion of the different categories of electronic waste, the recycling methods, and the use of high recycled value-added (HAV) materials from various e-waste components in green renewable energy technologies.

3.
Angew Chem Int Ed Engl ; 61(21): e202116727, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254698

RESUMO

A new isolation protocol was recently reported for highly purified metallic Fullertubes D5h -C90 , D3d -C96 , and D5d -C100, which exhibit unique electronic features. Here, we report the oxygen reduction electrocatalytic behavior of C60 , C70 (spheroidal fullerenes), and C90 , C96 , and C100 (tubular fullerenes) using a combination of experimental and theoretical approaches. C96 (a metal-free catalyst) displayed remarkable oxygen reduction reaction (ORR) activity, with an onset potential of 0.85 V and a halfway potential of 0.75 V, which are close to the state-of-the-art Pt/C benchmark catalyst values. We achieved an excellent power density of 0.75 W cm-2 using C96 as a modified cathode in a proton-exchange membrane fuel cell, comparable to other recently reported efficient metal-free catalysts. Combined band structure (experimentally calculated) and free-energy (DFT) investigations show that both favorable energy-level alignment active catalytic sites on the carbon cage are responsible for the superior activity of C96 .

4.
J Am Chem Soc ; 143(10): 4064-4073, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33661615

RESUMO

Platinum (Pt)-based-nanomaterials are currently the most successful catalysts for the oxygen reduction reaction (ORR) in electrochemical energy conversion devices such as fuel cells and metal-air batteries. Nonetheless, Pt catalysts have serious drawbacks, including low abundance in nature, sluggish kinetics, and very high costs, which limit their practical applications. Herein, we report the first rationally designed nonprecious Co-Cu bimetallic metal-organic framework (MOF) using a low-temperature hydrothermal method that outperforms the electrocatalytic activity of Pt/C for ORR in alkaline environments. The MOF catalyst surpassed the ORR performance of Pt/C, exhibiting an onset potential of 1.06 V vs RHE, a half-wave potential of 0.95 V vs RHE, and a higher electrochemical stability (ΔE1/2 = 30 mV) after 1000 ORR cycles in 0.1 M NaOH. Additionally, it outperformed Pt/C in terms of power density and cyclability in zinc-air batteries. This outstanding behavior was attributed to the unique electronic synergy of the Co-Cu bimetallic centers in the MOF network, which was revealed by XPS and PDOS.

5.
Langmuir ; 37(17): 5161-5171, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33876646

RESUMO

We demonstrate the fabrication of binder-free electrospun nickel-manganese oxides embedded into carbon-shell fibrous electrodes. The morphological and structural properties of the assembled electrode materials were elucidated by high-resolution transmission electron microscopy (HR-TEM), field-emission scanning electron microscopy, and glancing-angle X-ray diffraction. The fibrous structure of the electrodes was retained even after annealing at high temperatures. The X-ray photoelectron spectroscopy and HR-TEM analyses revealed the formation of nickel and manganese oxides in multiple oxidation states (Ni2+, Ni3+, Mn2+, Mn3+, and Mn4+) embedded in the carbon shell. The embedded nickel-manganese oxides into the carbon matrix fibrous electrodes exhibit an excellent capacitance (1082 F/g) in 1 M K2SO4 at 1 A/g and possess a high rate capability of 73% at 5 A/g. The high rate capability and capacitance can be attributed to the presence of carbon cross-linked channels, the binder-free nature of the electrodes, and various oxidation states of the Ni-Mn oxides. The asymmetric supercapacitor device constructed of the as-fabricated nanofibers and the bio-derived microporous carbon as the positive and negative electrodes, respectively, sustains up to 1.9 V with a high specific capacitance at 1.5 A/g of 108 F/g. The nanofibrous//bio-derived device exhibits an outstanding specific energy of 54.2 W h/kg with a high specific power of 1425 W/kg. Interestingly, the tested device maintains a high capacitive retention of 92% upon cycling over 10,000 charging/discharging cycles.

6.
Langmuir ; 37(24): 7492-7502, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34101479

RESUMO

One of the main protective measures against COVID-19's spread is the use of face masks. It is therefore of the utmost importance for face masks to be high functioning in terms of their filtration ability and comfort. Notwithstanding the prevalence of the commercial polypropylene face masks, its effectiveness is under contention, leaving vast room for improvement. During the pandemic, the use of at least one mask per day for each individual results in a massive number of masks that need to be safely disposed of. Fabricating biodegradable filters of high efficiency not only can protect individuals and save the environment but also can be sewed on reusable/washable cloth masks to reduce expenses. Wearing surgical masks for long periods of time, especially in hot regions, causes discomfort by irritating sensitive facial skin and warmed inhaled air. Herein, we demonstrate the fabrication of novel electrospun composites layers as face mask filters for protection against pathogens and tiny particulates. The combinatorial filter layers are made by integrating TiO2 nanotubes as fillers into chitosan/poly(vinyl alcohol) polymeric electrospun nanofibers as the outer layer. The other two filler-free layers, chitosan/poly(vinyl alcohol) and silk/poly(vinyl alcohol) as the middle and inner composite layers, respectively, were used for controlled protection, contamination prevention, and comfort for prolonged usage. The ASTM standards evaluation tests were adopted to evaluate the efficacy of the assembled filter, revealing high filtration efficiency compared to that of commercial surgical masks. The TiO2/Cs/PVA outer layer significantly reduced Staphylococcus aureus bacteria by 44.8% compared to the control, revealing the dual effect of TiO2 and chitosan toward the infectious bacterial colonies. Additionally, molecular dynamics calculations were used to assess the mechanical properties of the filter layers.


Assuntos
COVID-19 , Filtração , Máscaras , Nanofibras , COVID-19/prevenção & controle , Análise Custo-Benefício , Humanos
7.
Phys Chem Chem Phys ; 21(32): 17494-17511, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31372620

RESUMO

Our life is turning into an electronic world where we need our devices charged all the time. Although batteries have been doing the job so far, we need devices that charge way faster with longer cycling stability. The answer could be supercapacitors; however, electrode materials that maintain both high energy density and high power density are yet to be discovered. Currently, researchers base their work on guess and check methods to modify electrode materials with limited organized work that targets the prediction of the properties of materials at an earlier stage. To this end, density functional theory (DFT) could be a realistic tool for early prediction of the properties of supercapacitor electrode materials. The targeted supercapacitor electrodes should exhibit multiple properties, which can be calculated using different DFT routes. Herein, a roadmap to predict the desired supercapacitive properties of materials using different levels of DFT is presented. Our target is to let researchers decide which property of the material they wish to predict or develop and choose the appropriate DFT route to do so.

8.
Phys Chem Chem Phys ; 21(21): 11476-11487, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31112167

RESUMO

A comprehensive analysis of low coverage CO adsorption on Ni and Cu low-index miller surfaces - (100), (110), and (111) - over all the possible adsorption sites is presented. Systems are theoretically studied within an accurate adsorption model using RPBE density functional calculations to obtain electronic and geometrical structure predictions along with their corresponding adsorption energy computations. Based on the surface- and site-dependent comparisons of the adsorption mechanisms, we were able to grasp trends that point to the factors that determine the final C-O structure upon adsorption. The resulting C-O bond length is found to be directly dependent on structural parameters, such as depth of adsorption and metal-adsorbate bonding distances, and the quantity of charge transferred from the surface to the CO molecule. Those factors are collated into a formula that defines the final C-O bond: the "C-O formula". For each adsorption site, the final C-O bond length is calculated using this formula and compared with the DFT predictions, where consistent matching results are obtained. Deeper analysis of the adsorbed C-O molecule is also presented from a molecular orbital level. Density of states (DOS) charts were exploited to investigate the perturbations in the 3σ and 1π orbitals that hold the internal C-O bond. From this analysis, a consistent link between the degree of destabilization of the orbitals and the final C-O bond length is found, obtaining a more profound understanding of the final adsorbate structure. Energetically, adsorptions on Cu and Ni surfaces are compared within the Blyholder-Nilsson and Petersson (B-NP) model. The frontier (5σ and 2π*) orbital energies relative to the d-band center of the metal surfaces are displayed, which implicitly defines the adsorption energy. The controversial repulsive nature of the σ-interaction proposed in the NP model has been tested by tracking the charge redistribution within the metallic states, including the broad sp-states. The nature of σ-interaction is, however, found to be dependent on the substrate type; repulsive σ-interaction is concluded for Ni, while for Cu, a rather dual nature is found, including both partial repulsive and attractive behavior, with a dominant and overall repulsive nature, in agreement with the NP model. The degree of σ repulsion/attraction is also found to be dependent on the metal coordination. Finally, spin-polarized DFT calculations were repeated for Ni surfaces and compared with the previous Ni results without spin-polarization. The reported results confirmed the absence of correlation between adsorption energetics and the final adsorbate structure, and verified the factors presented in the "C-O formula" as the main descriptors for the adsorbate structure.

9.
Phys Chem Chem Phys ; 20(3): 1881-1888, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29296979

RESUMO

Transition metal nitrides have recently been considered as potential replacements for noble metals as plasmonic materials. In particular, the localized surface plasmon resonance (LSPR) of refractory transition metal nitrides, such as TiN and ZrN, is an interesting option for plasmonic-based devices. Using FDTD simulations, the extinction, absorption and scattering cross sections were calculated for a pair of 42 nm TiN nanocubes, along with the electric field intensity "modes" for several separation distances. The face-to-face and edge-to-edge orientations were investigated and a plasmon ruler equation was derived from the exponential fitting for both orientations. It was found that the smaller the separation distance, the more the coupling achieved. The results of different combinations of materials for nanocube pairs, such as TiN, ZrN, Ag and Au combinations, were also obtained. The (Ag-Ag) showed the highest electric field intensity, (Au-Au) was the second and (ZrN-ZrN) was quite close to gold. Upon decreasing the separation distance, a red-shift in the wavelength of the plasmon peak was observed. The separation distance at which the TiN nanocube pair showed an LSPR wavelength equivalent to that of an isolated nanocube was identified. The "hot spot" region between the nanocubes was also identified, which is very important for many applications such as cancer therapeutics, imaging, sensing, photovoltaic solar cells, surface enhanced Raman scattering, near field scanning optical microscopy, water splitting and nanoscale optical devices.

10.
Phys Chem Chem Phys ; 20(40): 25892-25900, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30289135

RESUMO

CO adsorption on Cu(100), (110), and (111) surfaces has been extensively studied using Kohn-Sham density functional theory calculations. A holistic analysis of adsorption energies, charge transfer, and structural changes has been employed to highlight the variations in adsorption mechanisms upon changing the surface type and the adsorption site. Each surface, with its unique arrangement of atoms, resulted in a varying adsorbate behavior, although the same adsorption site is considered. This directly reflects the influence of the atomic arrangement on the substrate-adsorbate interactions. Site-interactions are rigorously investigated using molecular-orbital and charge transfer principles taking into account the fundamental interaction of frontier (5σ and 2π*) orbitals. Considering the effects of the surface atomic arrangement and density of metal interacting orbitals, along with the relative d-5σ and d-2π* energy spacings, the calculated adsorption preference to higher coordination sites is explained, which also revealed valuable interpretations to the well-known DFT CO adsorption puzzle. In addition, we studied the perturbations occurring upon adsorption to the 3σ and 1π orbitals, which hold the internal C-O bond. Studying 3σ and 1π orbital perturbations provided a wealth of theoretical interpretations for the varying behavior of the adsorbate molecule when similar adsorption sites are compared at different facets.

11.
Phys Chem Chem Phys ; 20(15): 10258-10265, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29594276

RESUMO

Understanding the nature of interfacial defects of materials is a critical undertaking for the design of high-performance hybrid electrodes for photocatalysis applications. Theoretical and computational endeavors to achieve this have touched boundaries far ahead of their experimental counterparts. However, to achieve any industrial benefit out of such studies, experimental validation needs to be systematically undertaken. In this sense, we present herein experimental insights into the synergistic relationship between the lattice position and oxidation state of tungsten ions inside a TiO2 lattice, and the respective nature of the created defect states. Consequently, a roadmap to tune the defect states in anodically-fabricated, ultrathin-walled W-doped TiO2 nanotubes is proposed. Annealing the nanotubes in different gas streams enabled the engineering of defects in such structures, as confirmed by XRD and XPS measurements. While annealing under hydrogen stream resulted in the formation of abundant Wn+ (n < 6) ions at the interstitial sites of the TiO2 lattice, oxygen- and air-annealing induced W6+ ions at substitutional sites. EIS and Mott-Schottky analyses indicated the formation of deep-natured trap states in the hydrogen-annealed samples, and predominantly shallow donating defect states in the oxygen- and air-annealed samples. Consequently, the photocatalytic performance of the latter was significantly higher than those of the hydrogen-annealed counterparts. Upon increasing the W content, photoelectrochemical performance deteriorated due to the formation of WO3 crystallites that hindered charge transfer through the photoanode, as evident from the structural and chemical characterization. To this end, this study validates the previous theoretical predictions on the detrimental effect of interstitial W ions. In addition, it sheds light on the importance of defect states and their nature for tuning the photoelectrochemical performance of the investigated materials.

12.
Phys Chem Chem Phys ; 20(8): 5975-5982, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29424851

RESUMO

Black TiO2 is being widely investigated due to its superior optical activity and potential applications in photocatalytic hydrogen generation. Herein, the limitations of the hydrogenation process of TiO2 nanostructures are unraveled by exploiting the fundamental tradeoffs affecting the overall efficiency of the water splitting process. To control the nature and concentration of defect states, different reduction rates are applied to sub-100 nm TiO2 nanotubes, chosen primarily for their superiority over their long counterparts. X-Ray Photoelectron Spectroscopy disclosed changes in the stoichiometry of TiO2 with the reduction rate. UV-vis and Raman spectra showed that high reduction rates promote the formation of the rutile phase in TiO2, which is inactive towards water splitting. Furthermore, electrochemical analysis revealed that such high rates induce a higher concentration of localized electronic defect states that hinder the water splitting performance. Finally, incident photon-to-current conversion efficiency (IPCE) highlighted the optimum reduction rate that attains a relatively lower defect concentration as well as lower rutile content, thereby achieving the highest conversion efficiency.

13.
Phys Chem Chem Phys ; 18(32): 22217-23, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27453354

RESUMO

An electrochemical method is presented to study the nature of the defect states in sub-stoichiometric tungsten oxide nanoflake photoanodes used in water splitting. First, stoichiometric/sub-stoichiometric tungstate nanoflake arrays were deliberately developed via annealing under different atmospheres (air, O2, and H2) in different sequences. UV-Vis diffuse reflectance spectra and Tauc analysis indicated the presence of oxygen vacancies, which was also confirmed via XRD and Raman analysis, with samples annealed in an air/O2 sequence resulting in the most stoichiometric monoclinic structures. A defect sensitivity factor was proposed to explain the nature of defects whether they are deep or shallow. Mott-Schottky analysis was used to confirm the expected defect donor densities, as well as to confirm the nature of the developed oxygen vacancy defect states. The tungstate photoanodes were tested in photoelectrochemical water splitting cells and their photoconversion efficiency was demonstrated and discussed in detail.

14.
Phys Chem Chem Phys ; 16(34): 18418-24, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25070526

RESUMO

We report on the first principles calculation of the electronic, structural and optical properties of BaTaO2N, using density functional theory (DFT) and finite difference time domain (FDTD) methods. Band structure calculations were performed to calculate the direct and indirect bandgaps of the material. Density of states and Mulliken charge analysis as well as the electronic contour maps were established to determine the type of bonding and hybridization between the various electronic states. The dielectric constant, reflectivity, absorption, optical conductivity and energy-loss function were also calculated. Moreover, FDTD was used to investigate the optical properties of a larger and more reliable structure of BaTaO2N powder in good agreement with the reported experimental parameters. The calculated electronic, structural and optical properties showed the potential of BaTaO2N for solar energy conversion and optoelectronic applications.

15.
ACS Appl Bio Mater ; 7(4): 2569-2581, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570335

RESUMO

Chronic wounds impose a significant burden on individuals and healthcare systems, necessitating the development of advanced wound management strategies. Tissue engineering, with its ability to create scaffolds that mimic native tissue structures and promote cellular responses, offers a promising approach. Electrospinning, a widely used technique, can fabricate nanofibrous scaffolds for tissue regeneration. In this study, we developed patterned nanofibrous scaffolds using a blend of poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS), known for their biocompatibility and biodegradability. By employing a mesh collector, we achieved a unique fiber orientation pattern that emulated the natural tissue architecture. The average fiber diameter of PGS/PCL collected on aluminum foil and on mesh was found to be 665.2 ± 4 and 404.8 ± 16 nm, respectively. To enhance the scaffolds' bioactivity and surface properties, it was coated with hyaluronic acid (HA), a key component of the extracellular matrix known for its wound-healing properties. The HA coating improved the scaffold hydrophilicity and surface wettability, facilitating cell attachment, spreading, and migration. Furthermore, the HA-coated scaffold exhibited enhanced biocompatibility, promoting cell viability and proliferation. High-throughput RNA sequencing was performed to analyze the influence of the fabricated scaffold on the gene expression levels of endothelial cells. The top-upregulated biological processes and pathways include cell cycle regulation and cell proliferation. The results revealed significant alterations in gene expression profiles, indicating the scaffold's ability to modulate cellular functions and promote wound healing processes. The developed scaffold holds great promise for advanced wound management and tissue regeneration applications. By harnessing the advantages of aligned nanofibers, biocompatible polymers, and HA coating, this scaffold represents a potential solution for improving wound healing outcomes and improving the quality of life for individuals suffering from chronic wounds.


Assuntos
Nanofibras , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Nanofibras/química , Ácido Hialurônico/farmacologia , Poliésteres/farmacologia , Poliésteres/química , Células Endoteliais , Transcriptoma , Qualidade de Vida
16.
ACS Appl Mater Interfaces ; 16(25): 32298-32310, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38875471

RESUMO

The design and synthesis of novel heterostructured electrode materials are crucial to enable the fabrication of efficient supercapacitor devices. In this regard, transition metal phosphochalcogenides (S, Se) are promising candidates owing to their exotic electronic properties. Herein, a facile two-step hydrothermal protocol was used to synthesize binary and ternary metal phospho-selenide electrodes (Mn-Fe-P-Se, V-Fe-P-Se, Mn-V-P-Se, and Mn-Fe-V-P-Se). The chemical composition, morphology, and structure of the as-fabricated materials were fully investigated. The three-electrode electrochemical evaluation at 1.0 A g-1 demonstrated that the ternary metal electrode (MFVP-Se) exhibits a high capacity of 1968.63 C g-1. To assess the practical value of the rationally designed Mn-Fe-V-P-Se electrode material, Mn-Fe-V-P-Se was used as a positive electrode coupled with activated carbon (AC) as a negative electrode to assemble a hybrid supercapacitor device. This Mn-Fe-V-P-Se//AC device delivers a power density of 1999.96 W kg-1 with a high energy density of 149.88 Wh kg-1 coupled with no capacity loss after 5000 charging/discharging cycles. Additionally, density functional theory calculations revealed that our electrode exhibits suitable adsorption energy for OH- ions with a minimal diffusion barrier for ions.

17.
Nanoscale Adv ; 6(16): 4160-4166, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39114149

RESUMO

Tuning the surroundings of single-atom catalysts (SACs) has been recognized as a successful approach to enhance their electrocatalytic efficiency. In this study, we utilized density functional theory (DFT) computations to systematically investigate how the coordination environment influences the catalytic performance of individual molybdenum atoms for the nitrogen reduction reaction (NRR) to NH3. Upon comparing an extensive array of coordination combinations, Mo-based SACs were found to feature a distinctive N, P-dual coordination. Specifically, MoN3P1G demonstrates superior performance in the conversion of nitrogen into ammonia with an exceptionally low limiting potential (-0.64 V). This MoN3P1G catalyst preferably follows the distal pathway, with the initial hydrogenation step (*N2 → *NNH) being the rate-determining step. Additionally, MoN3P1G exhibits the ability to suppress competing H2 production, showcases high thermodynamic stability, and holds significant promise for experimental preparation. These findings not only contribute to diversifying the SAC family through localized coordination control but also present cost-effective strategies for enhancing sustainable NH3 production.

18.
Nanoscale Adv ; 6(13): 3355-3366, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38933851

RESUMO

Bacterial infections represent a major global health concern, causing millions of deaths and a significant economic burden. The development of antibacterial nanoporous surfaces with potential mechano-bactericidal effects can revolutionize infection control practices. In this study, a hybrid material of zeolitic imidazolate framework-8 (ZIF-8) doped with phosphomolybdic acid (PMA) was synthesized and characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and N2 sorption isotherms. PMA@ZIF-8 performance as an antibacterial agent against E. coli was superior to that of its individual constituents, suggesting a synergistic effect of PMA and ZIF-8. The incorporation of PMA into ZIF-8 significantly enhanced its antibacterial efficacy, as evidenced by a twofold reduction in MIC (375 µg mL-1 vs. 750 µg mL-1) and a 4.35 times increase in the bactericidal kinetics rate constant. The time-kill curve experiment revealed that PMA@ZIF-8 achieved a 3-log reduction within 7 hours, whereas ZIF-8 required 24 hours to reach the same level of reduction. The density functional theory (DFT) calculated bandgap of PMA@ZIF-8 was significantly less than that of ZIF-8. Also, PMA@ZIF-8 has caused the elimination of 56.72% of the thiol group as detected by Ellman's assay. Accordingly, PMA@ZIF-8 can be both computationally and experimentally demonstrated as an oxidative nanozyme. PMA@ZIF-8's surface topology revealed nanorod protrusions, suggesting a potential mechano-bactericidal effect, which was confirmed by live/dead assay on PMA@ZIF-8-coated glass. This study highlights the potential of the PMA@ZIF-8 hybrid as a highly effective antibacterial agent, holding promise for creating multifunctional antibacterial surfaces.

19.
BioTech (Basel) ; 13(3)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39051339

RESUMO

Rutin, a flavonoid phytochemical compound, plays a vital role in human health. It is used in treating capillary fragility and has anti-Alzheimer, anti-inflammatory, and antioxidant effects. In this study, Ti-Mo-Ni-O nanotubes (NTs) were used, for the first time, in an unprecedented plant biotechnology application, wherein in vitro Philodendron shoots (Philodendron erubescens) known as "Imperial Red" were targeted for rutin accumulation. The antioxidant responses and the accumulation of rutin were evaluated in treated Philodendron erubescens (P. erubescens) shoots using 5.0 mg/L of Ti-Mo-Ni-O NTs. The total phenolic content and total flavonoid content were estimated, and an ABTS+ assay, FRAP assay, and iron metal chelation assay were performed. The application of Ti-Mo-Ni-O NTs enhanced the rutin content considerably from 0.02 mg/g to 2.96 mg/g for dry-weight shootlet extracts. Therefore, the use of Ti-Mo-Ni-O NTs is proposed to be a superior alternative to elevate the rutin content. The aim of the current study is to target P. erubescens shoots grown in vitro for the accumulation of rutin compounds using Ti-Mo-Ni-O NT powder, to determine the quantitative and qualitative accumulation of rutin via HPLC-DAD analysis, and to estimate the antioxidant activity of P. erubescens shoot extract. This study presents a novel methodology for utilizing nano-biotechnology in the synthesis of plant secondary metabolites.

20.
RSC Adv ; 14(35): 25750-25758, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39148753

RESUMO

Innovative solutions are urgently needed with the growing environmental hazard of electronic waste (e-waste) and the rising global threat of bacterial infections. This study addresses both issues by using e-waste to produce copper nanoparticles within a carbon matrix (Cu/C NPs), mitigating environmental hazards while exploring their antibacterial properties. Printed circuit boards from discarded computers were collected and treated with 2 M ammonium citrate dissolved in 8% ammonia solution. The leached solution was used to synthesize copper particles using ascorbic acid. The synthesized Cu/C NPs were characterized using various techniques such as EDX, field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The antibacterial activity of Cu/C NPs against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated using colony-forming unit (CFU) reduction assay and calculating the minimum inhibitory concentrations (MICs). The Cu/C NPs were found to be effective against E. coli and S. aureus with 100% and 98% CFU reduction, respectively, with MICs ranging from 250 to 375 µg mL-1 for E. coli and 375 to 750 µg mL-1 for S. aureus, according to the bacterial load. The bactericidal kinetics showed complete bacterial elimination after 5 and 7 hours for E. coli and S. aureus, respectively. This study presents a sustainable approach for utilizing e-waste and demonstrates the potential of the recovered nanoparticles for antibacterial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA