Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031616

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), released from petrogenic, pyrogenic or diagenetic sources (degradation of wood materials), are of global concern due to their adverse effects, and potential for long-range transport. While dissolved PAHs have been frequently reported in the literature, there has been no consistent approach of sampling across water bodies. Passive samplers from the AQUA/GAPS-MONET initiative were deployed at 46 sites (28 marine and 18 freshwater), and analyzed for 28 PAHs and six polycyclic musks (PCMs) centrally. Freely dissolved PAH concentrations were dominated by phenanthrene (mean concentration 1500 pg L-1; median 530 pg L-1) and other low molecular weight compounds. Greatest concentrations of phenanthrene, fluoranthene, and pyrene were typically from the same sites, mostly in Europe and North America. Of the PCMs, only galaxolide (72% of samples) and tonalide (61%) were regularly detected, and were significantly cross-correlated. Benchmarking of PAHs relative to penta- and hexachlorobenzene confirmed that the most remote sites (Arctic, Antarctic, and mountain lakes) displayed below average PAH concentrations. Concentrations of 11 of 28 PAHs, galaxolide and tonalide were positively correlated (P < 0.05) with population density within a radius of 5 km of the sampling site. Characteristic PAH ratios gave conflicting results, likely reflecting multiple PAH sources and postemission changes.

2.
Environ Sci Technol ; 57(25): 9342-9352, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294896

RESUMO

Persistent organic pollutants (POPs) are recognized as pollutants of global concern, but so far, information on the trends of legacy POPs in the waters of the world has been missing due to logistical, analytical, and financial reasons. Passive samplers have emerged as an attractive alternative to active water sampling methods as they accumulate POPs, represent time-weighted average concentrations, and can easily be shipped and deployed. As part of the AQUA-GAPS/MONET, passive samplers were deployed at 40 globally distributed sites between 2016 and 2020, for a total of 21 freshwater and 40 marine deployments. Results from silicone passive samplers showed α-hexachlorocyclohexane (HCH) and γ-HCH displaying the greatest concentrations in the northern latitudes/Arctic Ocean, in stark contrast to the more persistent penta (PeCB)- and hexachlorobenzene (HCB), which approached equilibrium across sampling sites. Geospatial patterns of polychlorinated biphenyl (PCB) aqueous concentrations closely matched original estimates of production and use, implying limited global transport. Positive correlations between log-transformed concentrations of Σ7PCB, ΣDDTs, Σendosulfan, and Σchlordane, but not ΣHCH, and the log of population density (p < 0.05) within 5 and 10 km of the sampling sites also supported limited transport from used sites. These results help to understand the extent of global distribution, and eventually time-trends, of organic pollutants in aquatic systems, such as across freshwaters and oceans. Future deployments will aim to establish time-trends at selected sites while adding to the geographical coverage.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Bifenilos Policlorados/análise , Monitoramento Ambiental/métodos , Hexaclorobenzeno/análise , Água Doce , Poluentes Atmosféricos/análise , Praguicidas/análise , Hidrocarbonetos Clorados/análise
3.
Anal Bioanal Chem ; 415(15): 2999-3006, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36869273

RESUMO

Due to the flux of plastic debris entering the environment, it becomes urgent to document and monitor their degradation pathways at different scales. At the colloidal scale, the systematic hetero-association of nanoplastics with the natural organic matter complexifies the ability to detect plastic signatures in the particle collected in the various environments. The current techniques used for microplastics could not discriminate the polymers at the nanoscale from the natural macromolecules, as the plastic mass in the aggregate is within the same order. Only a few methods are available concerning nanoplastics identification in complex matrices, with the coupling of pyrolysis with gas chromatography and mass spectrometry (Py-GC-MS) as one of the most promising due to its mass-based detection. However, natural organic matter in environmental samples interferes with similar pyrolysis products. These interferences are even more critical for polystyrene polymers as this plastic presents no dominant pyrolysis markers, such as polypropylene, that could be identified at trace concentrations. Here, we investigate the ability to detect and quantify polystyrene nanoplastics in a rich phase of natural organic matter proposed based on the relative ratio of pyrolyzates. The use of specific degradation products (styrene dimer and styrene trimer) and the toluene/styrene ratio (RT/S) are explored for these two axes. While the size of the polystyrene nanoplastics biased the pyrolyzates of styrene dimer and trimer, the RT/S was correlated with the nanoplastics mass fraction in the presence of natural organic matter. An empirical model is proposed to evaluate the relative quantity of polystyrene nanoplastics in relevant environmental matrices. The model was applied to real contaminated soil by plastic debris and literature data to demonstrate its potential.

4.
Environ Sci Technol ; 54(11): 6693-6702, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32402185

RESUMO

Temporal monitoring of pollutants in aquatic systems impacted by human activities is mandatory for a correct assessment on their environmental impact and later management. The aim of this work was to study the suitability of using silicone rubber passive samplers and caged organisms (Ruditapes philippinarum), simultaneously, to examine the spatial and temporal variability of priority and emerging contaminants in a coastal environment (Cadiz Bay, SW Spain) over the course of an entire year. Seasonal trends were observed for some classes of compounds, such as UV filters and fragrances, and attributed to fluctuations in their sources and changes in the hydrodynamic conditions, respectively. Up to 42 out of 48 (in seawater) and 27 out of 37 (in biota) target analytes were detected, the highest concentrations being observed for synthetic fragrances and UV filters in both biota (136.9-159 ng g-1) and the dissolved phase (3322.2-265.7 ng L-1). Conversely, spatiotemporal differences in the concentrations of target contaminants in clam tissues were minimal. Higher field bioaccumulation factors (log BAF > 5) were found for priority substances. Overall, silicone rubber passive samplers proved to be more sensitive than sentinel organisms for monitoring spatiotemporal changes in the dissolved aqueous concentrations of contaminants, whereas the latter allowed for a more realistic evaluation of the potential uptake and bioaccumulation of each compound.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Humanos , Espécies Sentinelas , Espanha , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 51(3): 1060-1067, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-27983810

RESUMO

Organic contaminants, in particular persistent organic pollutants (POPs), adversely affect water quality and aquatic food webs across the globe. As of now, there is no globally consistent information available on concentrations of dissolved POPs in water bodies. The advance of passive sampling techniques has made it possible to establish a global monitoring program for these compounds in the waters of the world, which we call the Aquatic Global Passive Sampling (AQUA-GAPS) network. A recent expert meeting discussed the background, motivations, and strategic approaches of AQUA-GAPS, and its implementation as a network of networks for monitoring organic contaminants (e.g., POPs and others contaminants of concern). Initially, AQUA-GAPS will demonstrate its operating principle via two proof-of-concept studies focused on the detection of legacy and emerging POPs in freshwater and coastal marine sites using both polyethylene and silicone passive samplers. AQUA-GAPS is set up as a decentralized network, which is open to other participants from around the world to participate in deployments and to initiate new studies. In particular, participants are sought to initiate deployments and studies investigating the presence of legacy and emerging POPs in Africa, Central, and South America.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Água Doce , Humanos , Água , Qualidade da Água
6.
Environ Sci Technol ; 50(15): 7964-72, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27312518

RESUMO

Snowmelt, surface runoff, or stormwater releases in urban environments can result in significant discharges of particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) into aquatic environments. Recently, more-specific activities such as road-tunnel washing have been identified as contributing to contaminant load to surface waters. However, knowledge of PAH accessibility in particulate matter (PM) of urban origin that may ultimately be released into urban surface waters is limited. In the present study, we evaluated the accessibility of PAHs associated with seven distinct (suspended) particulate matter samples collected from different urban sources. Laboratory-based infinite sink extractions with silicone rubber (SR) as the extractor phase demonstrated a similar pattern of PAH accessibility for most PM samples. Substantially higher accessible fractions were observed for the less-hydrophobic PAHs (between 40 and 80% of total concentrations) compared with those measured for the most-hydrophobic PAHs (<5% of total concentrations). When we focused on PAHs bound to PM from tunnel-wash waters, first-order desorption rates for PAHs with log Kow > 5.5 were found in line with those commonly found for slowly or very slowly desorbing sediment-associated contaminants. PAHs with log Kow < 5.5 were found at higher desorbing rates. The addition of detergents did not influence the extractability of lighter PAHs but increased desorption rates for the heavier PAHs, potentially contributing to increases in the toxicity of tunnel-wash waters when surfactants are used. The implications of total and accessible PAH concentrations measured in our urban PM samples are discussed in a context of management of PAH and PM emission to the surrounding aquatic environment. Although we only fully assessed PAHs in this work, further study should consider other contaminants such as OPAHs, which were also detected in all PM samples.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Monitoramento Ambiental , Material Particulado/análise
7.
Environ Sci Technol ; 50(1): 3-17, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26619247

RESUMO

We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations in water, but this definition has little scientific basis. Insufficient quality control is a present weakness of passive sampling in water. Laboratory performance studies and the development of standardized methods are needed to improve data quality and to encourage the use of passive sampling by commercial laboratories and monitoring agencies. Successful prediction of bioaccumulation based on passive sampling is well documented for organisms at the lower trophic levels, but requires more research for higher levels. Despite the existence of several knowledge gaps, passive sampling presently is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined.


Assuntos
Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Biota , Sedimentos Geológicos/química , Compostos Orgânicos/química
8.
Anal Bioanal Chem ; 406(13): 3191-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24691721

RESUMO

This paper presents an optimization of the pharmaceutical Polar Organic Chemical Integrative Sampler (POCIS-200) under controlled laboratory conditions for the sampling of acidic (2,4-dichlorophenoxyacetic acid (2,4-D), acetochlor ethanesulfonic acid (ESA), acetochlor oxanilic acid, bentazon, dicamba, mesotrione, and metsulfuron) and polar (atrazine, diuron, and desisopropylatrazine) herbicides in water. Indeed, the conventional configuration of the POCIS-200 (46 cm(2) exposure window, 200 mg of Oasis® hydrophilic lipophilic balance (HLB) receiving phase) is not appropriate for the sampling of very polar and acidic compounds because they rapidly reach a thermodynamic equilibrium with the Oasis HLB receiving phase. Thus, we investigated several ways to extend the initial linear accumulation. On the one hand, increasing the mass of sorbent to 600 mg resulted in sampling rates (R s s) twice as high as those observed with 200 mg (e.g., 287 vs. 157 mL day(-1) for acetochlor ESA). Although detection limits could thereby be reduced, most acidic analytes followed a biphasic uptake, proscribing the use of the conventional first-order model and preventing us from estimating time-weighted average concentrations. On the other hand, reducing the exposure window (3.1 vs. 46 cm(2)) allowed linear accumulations of all analytes over 35 days, but R s s were dramatically reduced (e.g., 157 vs. 11 mL day(-1) for acetochlor ESA). Otherwise, the observation of biphasic releases of performance reference compounds (PRC), though mirroring acidic herbicide biphasic uptake, might complicate the implementation of the PRC approach to correct for environmental exposure conditions.

9.
Environ Sci Pollut Res Int ; 31(42): 54546-54558, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39207616

RESUMO

Equilibrium passive sampling continues to find increasing use for performing in situ assessments and monitoring of hydrophobic organic compounds (HOCs). Although this method has been successfully used in several field studies including open surface waters and sediments, comparatively, their use in groundwater has been very limited. In this study, low-density polyethylene (LDPE) passive samplers were deployed for 80 days in three groundwater wells contaminated with polycyclic aromatic hydrocarbons (PAHs). Prior to deployment, LDPE was loaded with performance reference compounds (PRCs) consisting of deuterated PAHs and their release used to ascertain system equilibrium. Within the 80-day deployment period, LDPE-groundwater equilibrium was confirmed for PAHs with molecular weights (MWs) in the range of 178 to 228 (i.e. anthracene, chrysene). Measured freely dissolved concentrations (Cw) were between one to three orders of magnitude lower than the total filtered concentrations (Ctotal) in the studied wells. The sum of PAHs (ΣPAHs) measured based on Cw and Ctotal were 2.05, 0.07 and 29.2 µg L-1 and 197, 59.7 and 1010 µg L-1, at wells 1, 2 and 3, respectively. A separate dataset, comprising long-term (2010 to 2022) concentrations of PAHs in total (i.e., unfiltered) groundwater, is also presented to provide insight into PAH contamination levels at the assessed groundwater wells based on conventional measurement. Estimated in situ LDPE daily clearance volumes (2.34 to 27.56 Ld-1) for the target analytes were far less than the daily turnover of ground water (144 to 348 Ld-1) encountered in the wells eliminating the possibility of depletive sampling of the groundwater by the passive samplers. These results represent the first published study on the practical application of equilibrium passive sampling using LDPE for monitoring and quantitatively assessing PAHs in groundwater. Also, this work demonstrates that LDPEs are a useful tool for measuring the Cw of PAHs in groundwater, a critical contaminant in many ecological and human health risk assessments.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Hidrocarbonetos Policíclicos Aromáticos , Polietileno , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA