Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Biochem Funct ; 42(2): e3971, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509767

RESUMO

Autophagy, as a highly conserved cellular process, participates in cellular homeostasis by degradation and recycling of damaged organelles and proteins. Besides, autophagy has been evidenced to play a dual role through cancer initiation and progression. In the early stage, it may have a tumor-suppressive function through inducing apoptosis and removing damaged cells and organelles. However, late stages promote tumor progression by maintaining stemness features and induction of chemoresistance. Therefore, identifying and targeting molecular mechanisms involved in autophagy is a potential therapeutic strategy for human cancers. Multiple transcription factors (TFs) are involved in the regulation of autophagy by modulating the expression of autophagy-related genes (ATGs). In addition, a wide array of long noncoding RNAs (lncRNAs), a group of regulatory ncRNAs, have been evidenced to regulate the function of these autophagy-related TFs through tumorigenesis. Subsequently, the lncRNAs/TFs/ATGs axis shows great potential as a therapeutic target for human cancers. Therefore, this review aimed to summarize new findings about the role of lncRNAs in regulating autophagy-related TFs with therapeutic perspectives.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Neoplasias/genética , Apoptose , Autofagia
2.
Int J Biol Macromol ; 263(Pt 2): 130211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423902

RESUMO

Nanocatalysts are vital in several domains, such as chemical processes, energy generation, energy preservation, and environmental pollution mitigation. An experimental study was conducted at room temperature to evaluate the catalytic activity of the new gelatin-chitosan hydrogel/CuO/Fe3O4 nanocomposite in the asymmetric Hantzsch reaction. All components of the nanocomposite exhibit a synergistic effect as a Lewis acid, promote the reaction. Dimedone, ammonium acetate, ethyl acetoacetate, and other substituted aldehydes were used to synthesize diverse polyhydroquinoline derivatives. The nanocomposite exhibited exceptional efficacy (over 90 %) and durability (retaining 80 % of its original capacity after 5 cycles) as a catalyst in the one-pot asymmetric synthesis of polyhydroquinoline derivatives. Also, turnover numbers (TON) and turnover frequency (TOF) have been checked for catalyst (TON and TOF = 50,261 and 100,524 h-1) and products. The experiment demonstrated several benefits, such as exceptional product efficacy, rapid reaction time, functioning at ambient temperature without specific requirements, and effortless separation by the use of an external magnet after the reaction is finished. The results suggest the development of a magnetic nanocatalyst with exceptional performance. The composition of the Ge-CS hydrogel/CuO/Fe3O4 nanocomposite was thoroughly analyzed using several methods including FT-IR, XRD, FE-SEM, EDX, VSM, BET, and TGA. These analyses yielded useful information into the composition and characteristics of the nanocomposite, hence further enhancing the knowledge of its possible uses.


Assuntos
Quitosana , Nanocompostos , Nanopartículas , Quitosana/química , Cobre/química , Gelatina , Espectroscopia de Infravermelho com Transformada de Fourier , Hidrogéis , Fenômenos Magnéticos , Óxidos , Nanocompostos/química
3.
Int J Biol Macromol ; 260(Pt 1): 129367, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218269

RESUMO

The study focused on creating a novel and environmentally friendly nanocatalyst using cellulose (Cell), ß-Cyclodextrin (BCD), graphene oxide (GO), Cu2O, and Fe3O4.The nanocatalyst was prepared by embedding GO and Cu2O into Cell-BCD hydrogel, followed by the in-situ preparation of Fe3O4 magnetic nanoparticles to magnetize the nanocomposite. The effectiveness of this nanocatalyst was evaluated in the one-pot, three-component symmetric Hantzsch reaction for synthesizing 1,4-dihydropyridine derivatives with high yield under mild conditions. This novel nanocatalyst has the potential for broad application in various organic transformations due to its effective catalytic activity, eco-friendly nature, and ease of recovery.


Assuntos
Ciclodextrinas , Grafite , Nanocompostos , Nanopartículas , Hidrogéis , Fenômenos Magnéticos , Celulose
4.
Int J Biol Macromol ; 264(Pt 2): 130683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458289

RESUMO

Nowadays, there is a wide range of deficiencies in treatment of diseases. These limitations are correlated with the inefficient ability of current modalities in the prognosis, diagnosis, and treatment of diseases. Therefore, there is a fundamental need for the development of novel approaches to overcome the mentioned restrictions. Chitosan (CS) nanoparticles, with remarkable physicochemical and mechanical properties, are FDA-approved biomaterials with potential biomedical aspects, like serum stability, biocompatibility, biodegradability, mucoadhesivity, non-immunogenicity, anti-inflammatory, desirable pharmacokinetics and pharmacodynamics, etc. CS-based materials are mentioned as ideal bioactive materials for fabricating nanofibrous scaffolds. Sustained and controlled drug release and in situ gelation are other potential advantages of these scaffolds. This review highlights the latest advances in the fabrication of innovative CS-based nanofibrous scaffolds as potential bioactive materials in regenerative medicine and drug delivery systems, with an outlook on their future applications.


Assuntos
Quitosana , Nanofibras , Quitosana/química , Preparações Farmacêuticas , Nanofibras/química , Materiais Biocompatíveis , Alicerces Teciduais/química , Engenharia Tecidual
5.
Pathol Res Pract ; 257: 155288, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653088

RESUMO

Tumor-mediated immunosuppression is a fundamental obstacle to the development of dendritic cell (DC)-based cancer vaccines, which despite their ability to stimulate host anti-tumor CD8 T cell immunity, have not been able to generate meaningful therapeutic responses. Exosomes are inactive membrane vesicles that are nanoscale in size and are produced by the endocytic pathway. They are essential for intercellular communication. Additionally, DC-derived exosomes (DEXs) contained MHC class I/II (MHCI/II), which is frequently complexed with antigens and co-stimulatory molecules and is therefore able to prime CD4 and CD8 T cells that are specific to particular antigens. Indeed, vaccines with DEXs have been shown to exhibit better anti-tumor efficacy in eradicating tumors compared to DC vaccines in pre-clinical models of digestive system tumors. Also, there is room for improvement in the tumor antigenic peptide (TAA) selection process. DCs release highly targeted exosomes when the right antigenic peptide is chosen, which could aid in the creation of DEX-based antitumor vaccines that elicit more targeted immune responses. Coupled with their resistance to tumor immunosuppression, DEXs-based cancer vaccines have been heralded as the superior alternative cell-free therapeutic vaccines over DC vaccines to treat digestive system tumors. In this review, current studies of DEXs cancer vaccines as well as potential future directions will be deliberated.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Exossomos , Exossomos/imunologia , Humanos , Células Dendríticas/imunologia , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Neoplasias do Sistema Digestório/imunologia , Neoplasias do Sistema Digestório/terapia , Neoplasias do Sistema Digestório/patologia , Animais , Imunoterapia/métodos
6.
Crit Rev Anal Chem ; : 1-22, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829552

RESUMO

Field effect transistors (FETs)-based detection probes are powerful platforms for quantification in biological media due to their sensitivity, ease of miniaturization, and ability to function in biological media. Especially, FET-based platforms have been utilized as promising probes for label-free detections with the potential for use in real-time monitoring. The integration of new materials in the FET-based probe enhances the analytical performance of the developed probes by increasing the active surface area, rejecting interfering agents, and providing the possibility for surface modification. Furthermore, the use of new materials eliminates the need for traditional labeling techniques, providing rapid and cost-effective detection of biological analytes. This review discusses the application of materials in the development of FET-based label-free systems for point-of-care (POC) analysis of different biomedical analytes from 2018 to 2024. The mechanism of action of the reported probes is discussed, as well as their pros and cons were also investigated. Also, the possible challenges and potential for the fabrication of commercial devices or methods for use in clinics were discussed.

7.
Talanta ; 276: 126292, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795646

RESUMO

In recent decades, analytical techniques have increasingly focused on the precise quantification. Achieving this goal has been accomplished with conventional analytical approaches that typically require extensive pretreatment methods, significant reagent usage, and expensive instruments. The need for rapid, simple, and highly selective identification platforms has become increasingly pronounced. Molecularly imprinted polymer (MIP) has emerged as a promising avenue for developing advanced sensors that can potentially surpass the limitations of conventional detection methods. In recent years, the application of MIP-silica materials-based sensors has garnered significant attention owing to their distinctive characteristics. These types of probes hold a distinct advantage in their remarkable stability and durability, all of which provide a suitable sensing platform in severe environments. Moreover, the substrate composed of silica materials offers a vast surface area for binding, thereby facilitating the efficient detection of even minuscule concentrations of targets. As a result, sensors based on MIP-silica materials have the potential to be widely applied in various industries, including medical diagnosis, and food safety. In the present review, we have conducted an in-depth analysis of the latest research developments in the field of MIPs-silica materials based sensors, with a focus on succinctly summarizing and elucidating the most crucial findings. This is the first comprehensive review of integration MIPs with silica materials in electrochemical (EC) and optical probes for biomedical analysis and food safety.


Assuntos
Inocuidade dos Alimentos , Polímeros Molecularmente Impressos , Dióxido de Silício , Dióxido de Silício/química , Polímeros Molecularmente Impressos/química , Técnicas Biossensoriais/métodos , Humanos , Impressão Molecular , Técnicas Eletroquímicas/métodos
8.
Pathol Res Pract ; 254: 155084, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244434

RESUMO

This article undertakes a comprehensive investigation of ovarian cancer, examining the complex nature of this challenging disease. The main focus is on understanding the role of long non-coding RNAs (lncRNAs) in the context of ovarian cancer (OC), and their regulatory functions in disease progression. Through extensive research, the article identifies specific lncRNAs that play significant roles in the intricate molecular processes of OC. Furthermore, the study examines the signaling pathways involved in the development of OC, providing a detailed comprehension of the underlying molecular mechanisms. By connecting lncRNA dynamics with signaling pathways, this exploration not only advances our understanding of ovarian cancer but also reveals potential targets for therapeutic interventions. The findings open up opportunities for targeted treatments, highlighting the importance of personalized approaches in addressing this complex disease and driving progress in ovarian cancer research and treatment strategies.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Ovarianas/genética , Transdução de Sinais/genética , Progressão da Doença
9.
Clin Chim Acta ; 553: 117741, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38158002

RESUMO

Due to the growing demand for detection technologies, there has been significant interest in the development of integrated dual-modal sensing technologies, which involve combining two signal transduction channels into a single technique, particularly in the context of food safety. The integration of two detection signals not only improves diagnostic performance by reducing assumptions, but also enhances diagnostic functions with increased application flexibility, improved accuracy, and a wider detection linear range. The top two output signals for emerging dual-modal probes are fluorescent and colorimetric, due to their exceptional advantages for real-time sensitive sensing and point-of-care applications. With the rapid progress of nanotechnology and material chemistry, the integrated colorimetric/fluorimetric dual-mode systems show immense potential in sensing foodborne pathogenic bacteria. In this comprehensive review, we present a detailed summary of various colorimetric and fluorimetric dual-modal sensing methods, with a focus on their application in detecting foodborne bacteria. We thoroughly examine the sensing methodologies and the underlying principles of the signal transduction systems, and also discuss the challenges and future prospects for advancing research in this field.


Assuntos
Técnicas Biossensoriais , Colorimetria , Humanos , Bactérias , Corantes , Fluorometria , Nanotecnologia
10.
Int J Biol Macromol ; 271(Pt 1): 132267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816292

RESUMO

In light of the need to create new materials that are safe for use in biomedical applications like wound healing and tissue engineering, a unique nanocomposite was formulated and produced in the current investigation. A biocompatible hydrogel was created using natural polymers xanthan gum (XG) and alginate (Alg). In order to enhance the mechanical characteristics of the natural polymer-based hydrogels, polyvinyl alcohol (PVA) was added to the hydrogel matrix. Subsequently, the XG-Alg hydrogel/PVA structure was combined with ZnMnFe2O4 nanoparticles in order to augment the antibacterial efficacy of the biomaterial. The XG-Alg hydrogel/PVA/ZnMnFe2O4 nanocomposite was analyzed using XRD, EDX, FT-IR, TGA, and FE-SEM techniques to determine its properties. In addition, the mechanical properties of the pure hydrogel were compared to those of the XG-Alg hydrogel/PVA/ZnMnFe2O4 nanocomposite. The nanocomposite exhibited a biocompatibility of 96.45 % and 94.32 % with HEK293T cell lines after 24 h and 48 h of incubation, respectively, in biological evaluations. Furthermore, a significant antibacterial efficacy was demonstrated against both gram-positive S. aureus and gram-negative E. coli bacteria. The findings suggest that the developed XG-Alg hydrogel/PVA/ZnMnFe2O4 nanocomposite has promising qualities for use in biomedical fields, such as tissue engineering.


Assuntos
Alginatos , Antibacterianos , Hidrogéis , Nanocompostos , Polissacarídeos Bacterianos , Álcool de Polivinil , Alginatos/química , Alginatos/farmacologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Álcool de Polivinil/química , Nanocompostos/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Hidrogéis/farmacologia , Células HEK293 , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana
11.
Chemosphere ; 350: 141096, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176591

RESUMO

Evidence on prenatal exposure to polychlorinated biphenyls (PCBs) and its effects on newborns and potential biological mechanisms is not well defined yet. Therefore, this study aimed to examine whether PCBs are associated with lipid profile and non-invasive markers of hepatocyte injuries in samples of blood obtained from the umbilical cord. This study included 450 mothers-newborn pairs. Umbilical levels of PCBs were measured using Gas Chromatography/Mass Spectrophotometry (GC/MS). Lipid profile including low-density lipoprotein (LDL-C), total cholesterol (TC), triglycerides (TG), and high-density lipoprotein (HDL-C), as well as liver enzymes i.e., alanine amino transferase (ALT), aspartate amino transferase (AST), γ-glutamyl-transferase (GGT) and alkaline phosphatase (ALP) were determined from umbilical cord blood samples. Quantile g-computation analysis was applied to evaluate the collective influence of PCBs on both lipid profiles and liver enzymes, along with the impact of lipid profiles on liver enzymes. Exposure to the mixture of PCBs was significantly associated with increases in ALP, AST, ALT, and GGT levels in cord blood samples, with increments of 90.38 U/L (95%CI: 65.08, 115.70, p < 0.01), 11.88 U/L (95%CI: 9.03, 14.74, p < 0.01), 2.19 U/L (95%CI:1.43, 2.94, p < 0.01), and 50.67 U/L (95%CI: 36.32, 65.03, p < 0.01), respectively. Additionally, combined PCBs exposure was correlated with significant increases in umbilical TG, TC, and LDL-C levels, with values of 3.97 mg/dL (95%CI: 0.86, 7.09, p = 0.01), 6.30 mg/dL (95%CI: 2.98, 9.61, p < 0.01), and 4.63 mg/dL (95%CI: 2.04, 7.23, p < 0.01) respectively. Exposure to the mixture of lipids was linked to elevated levels of AST and GGT in umbilical cord blood samples. Furthermore, a noteworthy mediating role of TC and LDL-C was observed in the association between total PCBs exposure and umbilical cord blood liver enzyme levels. Overall our findings suggested that higher levels of umbilical cord blood PCBs and lipid profile could affect liver function in newborns.


Assuntos
Bifenilos Policlorados , Feminino , Gravidez , Humanos , Recém-Nascido , Sangue Fetal , LDL-Colesterol , Triglicerídeos , gama-Glutamiltransferase , Fosfatase Alcalina , Fígado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA