Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; : e202401310, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037938

RESUMO

In this work, a novel series of N-(arylcarbamothioyl)arylmide) 2-11 were synthesized by treating One-Pot three-multicomponent of Aroyl chloride ammonium isothiocyanate and amine compounds under refluxing conditions. Using spectroscopic methods, the chemical structure of the novelty developed compounds were investigated. After five days, the proposed derivatives' insecticidal bioassay was assessed using the median lethal concentration (LC50) against the second & fourth larvae of Spodoptera frugiperda as toxicity agents. The findings showed that, to varying degrees, every tested substance exerted insecticidal effects on S. frugiperda larvae in both of their instars. Compound 9 was the most poisonous of them all, having an LC50 against larvae in their second and fourth instars of 60.45 and 123.21 mg/L, respectively. Additionally, a few biological and biochemical characteristics of the substances that were generated in a lab setting were also looked at. Furthermore, this work discusses how to discover novel compounds that may one day be employed as insecticidal agents. Finally, all the designed components were monitored for their antibacterial effectiveness toward both Gram-positive & Gram-negative bacteria.

2.
RSC Adv ; 14(44): 31990-32000, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39391620

RESUMO

Inflammation is a complex process with many contributing factors, and it often causes pain. The pathophysiology of pain involves the release of inflammatory mediators that initiate pain sensation, as well as edema and other inflammation hallmarks. Selenium-containing compounds (OSe) are very promising for developing new medicines because they can treat many different diseases. In this study, we estimated the anti-inflammatory properties of maleanilic and succinanilic acids containing selenium (OSe). These molecules were designed by combining different strategies to enhance their anti-inflammatory properties. Hence, the anti-inflammatory impacts of compounds 8, 9, 10, and 11 were pursued using inflammatory markers COX-2, IL-1ß, and IL-6. Notably, it was revealed that compounds 8, 9, 10, and 11 downregulated COX-2, IL-1ß, and IL-6 by (2.01, 1.63, 2.26, and 2.05), (1.42, 1.64, 1.93, and 2.59), and (1.67, 2.54, 2.22, and 4.06)-fold changes, respectively. Moreover, molecular docking studies were conducted on compounds 8, 9, 10, and 11 to pursue their binding affinities for the COX-2 enzyme. Notably, very promising binding scores of compounds 8, 9, 10, and 11 towards the binding site of the COX-2 receptor were attained. Additionally, more accurate molecular dynamics simulations were performed for 200 ns for the docked complexes of compounds 8, 9, 10, and 11 to confirm the molecular docking findings, which ignore the protein's flexibility. Therefore, the exact stability of the N-amidic acids OSe compounds 8, 9, 10, and 11 towards the binding pocket of the COX-2 enzyme was examined and explained as well. Also, the MM-GBSA binding energy was calculated for equilibrated MD trajectory, and 200 snapshots were selected with a 50 ps interval for further analysis. Accordingly, the investigated compounds can be treated as prominent lead anti-inflammatory candidates for further optimization.

3.
Comput Biol Chem ; 109: 108031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382408

RESUMO

The exploration encompassed the synthesis and characterization of two innovative complexes, namely FePHNS and CuPHNS, employing a diverse array of analytical techniques such as elemental analysis, infrared and ultraviolet-visible spectroscopy, mass spectrometry, molar conductivity measurements, magnetic susceptibility assessments, and thermal analysis (TGA). In the spectral domain, infrared spectroscopy substantiated the tridentate ONS coordination of the PHNS ligand to the central metal atom. Thermal analysis offered valuable insights into the distribution and content of water molecules within the complexes. Density functional theory (DFT) calculations were harnessed to validate the molecular structures of both the PHNS ligand and its complex entities, providing an intricate comprehension of their quantum chemical parameters. The investigation extended to an evaluation of the in vitro antibacterial, antifungal, and antioxidant efficacy of the PHNS ligand and its complexes, revealing heightened biological activities for the complexes in comparison to the free PHNS ligand, notably with the CuPHNS complex demonstrating the highest activity, while the PHNS ligand exhibited the lowest. To delve into potential physiological activities, molecular docking studies were conducted, predicting the binding affinity of the compounds to proteins 2vf5 (Glucosamine-6-phosphate synthase in complex with glucosamine-6-phosphate) from Escherichia coli, 3cku (rate oxidase from Aspergillus flavus complexed with its inhibitor 8-azaxanthin and chloride) from Aspergillus flavus, and 5IJT (Crystal structure of Human Peroxiredoxin 2 Oxidized). The ensuing analysis of protein-ligand interactions and binding energies underscored the promising physiological activities of the investigated compounds, warranting further exploration for their potential in novel drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA