Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918178

RESUMO

Metals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. Determination of the complex structures of these metabolites presented numerous challenges, but they were ultimately solved using integrated data from NMR, mass spectrometry and deductions from the biosynthetic gene cluster. The leptochelins are comprised of halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Postcolumn infusion of metals using an LC-MS metabolomics workflow performed with leptochelins A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play key ecological roles in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines.

2.
BMC Complement Altern Med ; 18(1): 163, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29788962

RESUMO

BACKGROUND: There are increasing interests in natural compounds for cancer chemoprevention. Blocking agents represent an important class of chemopreventive compounds. They prevent carcinogens from undergoing metabolic activation and thereby suppressing their interaction with cellular macromolecular targets. METHODS: The effect of phenolic compounds isolated from Barleria cristata var. alba as chemopreventive agent was evaluated. The ethyl acetate fraction of B. cristata was subjected to different chromatographic techniques for isolation of its major phenolic compounds. The isolated compounds were evaluated for their potential to induce the cancer chemopreventive enzyme marker NAD(P)H quinonereductase 1 (NQO1) in murine Hepa-1c1c7 cell model. RESULTS: The ethyl acetate fraction of B. cristata var. alba yielded five known compounds identified as verbascoside (1), isoverbascoside (2), dimethoxyverbascoside (3), p-hydroxy benzoic acid (4), and apigenin-7-O-glucoside (5). Among the tested compounds, isoverbascoside (2) was shown to potently induce the activity of the enzyme in a dose -dependent manner. As a functional assay for detoxification, compound 2 was the strongest to protect Hepa-1c1c7 against the toxicity of menadione, a quinone substrate for NQO1. CONCLUSION: This effect seemed to be attributed to the compound's potential to induce both the catalytic activity and protein expression of NQO1 as revealed by enzyme assay and Western blotting, respectively.


Assuntos
Acanthaceae , Anticarcinógenos/farmacologia , NAD(P)H Desidrogenase (Quinona) , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Animais , Linhagem Celular Tumoral , Camundongos , NAD(P)H Desidrogenase (Quinona)/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo
3.
Arch Pharm (Weinheim) ; 348(11): 824-834, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26448297

RESUMO

A series of novel 1,4,6-trisubstituted-2-oxo-1,2-dihydropyridine-3-carbonitriles supported with some functionalities reported to contribute to significant chemotherapeutic potential were synthesized and evaluated for their antimicrobial and/or cytotoxic activities. Thirteen compounds exhibited cytotoxic potential against a panel of three human tumor cell lines. Compounds 15, 23, and 24 proved to be the most active agents with a broad spectrum of cytotoxic activity. Analog 24 was considered as the most active cytotoxic agent, being 2.5 times more active than doxorubicin against the colon HT29 carcinoma cell line. Seventeen compounds were able to exert a variable antimicrobial profile, among which analogs 15, 20, 21, 23, and 24 were prominently active. The highest antimicrobial potential was displayed by analog 24, being equipotent to ampicillin against Staphylococcus aureus and Escherichia coli, together with a considerable antifungal activity comparable with clotrimazole. Collectively, compounds 15, 23, and 24 could be considered as possible dual antimicrobial-anticancer candidates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA