Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 565(7737): 112-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30542153

RESUMO

Many enzymes catalyse reactions that proceed through covalent acyl-enzyme (ester or thioester) intermediates1. These enzymes include serine hydrolases2,3 (encoded by one per cent of human genes, and including serine proteases and thioesterases), cysteine proteases (including caspases), and many components of the ubiquitination machinery4,5. Their important acyl-enzyme intermediates are unstable, commonly having half-lives of minutes to hours6. In some cases, acyl-enzyme complexes can be stabilized using substrate analogues or active-site mutations but, although these approaches can provide valuable insight7-10, they often result in complexes that are substantially non-native. Here we develop a strategy for incorporating 2,3-diaminopropionic acid (DAP) into recombinant proteins, via expansion of the genetic code11. We show that replacing catalytic cysteine or serine residues of enzymes with DAP permits their first-step reaction with native substrates, allowing the efficient capture of acyl-enzyme complexes that are linked through a stable amide bond. For one of these enzymes, the thioesterase domain of valinomycin synthetase12, we elucidate the biosynthetic pathway by which it progressively oligomerizes tetradepsipeptidyl substrates to a dodecadepsipeptidyl intermediate, which it then cyclizes to produce valinomycin. By trapping the first and last acyl-thioesterase intermediates in the catalytic cycle as DAP conjugates, we provide structural insight into how conformational changes in thioesterase domains of such nonribosomal peptide synthetases control the oligomerization and cyclization of linear substrates. The encoding of DAP will facilitate the characterization of diverse acyl-enzyme complexes, and may be extended to capturing the native substrates of transiently acylated proteins of unknown function.


Assuntos
Biocatálise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Valinomicina/biossíntese , beta-Alanina/análogos & derivados , Vias Biossintéticas , Cisteína/metabolismo , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Domínios Proteicos , Serina/metabolismo , Especificidade por Substrato , beta-Alanina/metabolismo
2.
Nat Chem Biol ; 16(5): 493-496, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32066969

RESUMO

Nonribosomal depsipeptides are natural products composed of amino and hydroxy acid residues. The hydroxy acid residues often derive from α-keto acids, reduced by ketoreductase domains in the depsipeptide synthetases. Biochemistry and structures reveal the mechanism of discrimination for α-keto acids and a remarkable architecture: flanking intact adenylation and ketoreductase domains are sequences separated by >1,100 residues that form a split 'pseudoAsub' domain, structurally important for the depsipeptide module's synthetic cycle.


Assuntos
Depsipeptídeos/biossíntese , Cetoácidos/química , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Oxirredutases do Álcool/química , Bacillus/enzimologia , Proteínas de Bactérias/química , Cristalografia por Raios X , Depsipeptídeos/química , Cetoácidos/metabolismo , Lisina/metabolismo , Peptídeo Sintases/genética , Conformação Proteica , Domínios Proteicos
3.
4.
Biochim Biophys Acta ; 1814(12): 1846-53, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21807125

RESUMO

The human genome contains two genes encoding for two isoforms of the enzyme glucosamine-6-phosphate deaminase (GNPDA, EC 3.5.99.6). Isoform 1 has been purified from several animal sources and the crystallographic structure of the human recombinant enzyme was solved at 1.75Å resolution (PDB ID: 1NE7). In spite of their great structural similarity, human and Escherichia coli GNPDAs show marked differences in their allosteric kinetics. The allosteric site ligand, N-acetylglucosamine 6-phosphate (GlcNAc6P), which is an activator of the K-type of E. coli GNPDA has an unusual mixed allosteric effect on hGNPDA1, behaving as a V activator and a K inhibitor (antiergistic or crossed mixed K(-)V(+) effect). In the absence of GlcNAc6P, the apparent k(cat) of the enzyme is so low, that GlcNAc6P behaves as an essential activator. Additionally, substrate inhibition, dependent on GlcNAc6P concentration, is observed. All these kinetic properties can be well described within the framework of the Monod allosteric model with some additional postulates. These unusual kinetic properties suggest that hGNPDA1 could be important for the maintenance of an adequate level of the pool of the UDP-GlcNAc6P, the N-acetylglucosylaminyl donor for many reactions in the cell. In this research we have also explored the possible functional significance of the C-terminal extension of hGNPDA1 enzyme, which is not present in isoform 2, by constructing and studying two mutants truncated at positions 268 and 275.


Assuntos
Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Regulação Alostérica/fisiologia , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/isolamento & purificação , Sítio Alostérico , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
Protein Sci ; 29(12): 2316-2347, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33073901

RESUMO

Depsipeptides are compounds that contain both ester bonds and amide bonds. Important natural product depsipeptides include the piscicide antimycin, the K+ ionophores cereulide and valinomycin, the anticancer agent cryptophycin, and the antimicrobial kutzneride. Furthermore, database searches return hundreds of uncharacterized systems likely to produce novel depsipeptides. These compounds are made by specialized nonribosomal peptide synthetases (NRPSs). NRPSs are biosynthetic megaenzymes that use a module architecture and multi-step catalytic cycle to assemble monomer substrates into peptides, or in the case of specialized depsipeptide synthetases, depsipeptides. Two NRPS domains, the condensation domain and the thioesterase domain, catalyze ester bond formation, and ester bonds are introduced into depsipeptides in several different ways. The two most common occur during cyclization, in a reaction between a hydroxy-containing side chain and the C-terminal amino acid residue in a peptide intermediate, and during incorporation into the growing peptide chain of an α-hydroxy acyl moiety, recruited either by direct selection of an α-hydroxy acid substrate or by selection of an α-keto acid substrate that is reduced in situ. In this article, we discuss how and when these esters are introduced during depsipeptide synthesis, survey notable depsipeptide synthetases, and review insight into bacterial depsipeptide synthetases recently gained from structural studies.


Assuntos
Depsipeptídeos/biossíntese , Depsipeptídeos/química , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Ciclização , Domínios Proteicos , Relação Estrutura-Atividade
6.
Cell Chem Biol ; 23(3): 331-9, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26991102

RESUMO

Nonribosomal peptide synthetases (NRPSs) synthesize a vast variety of small molecules, including antibiotics, antitumors, and immunosuppressants. The NRPS condensation (C) domain catalyzes amide bond formation, the central chemical step in nonribosomal peptide synthesis. The catalytic mechanism and substrate determinants of the reaction are under debate. We developed chemical probes to structurally study the NRPS condensation reaction. These substrate analogs become covalently tethered to a cysteine introduced near the active site, to mimic covalent substrate delivery by carrier domains. They are competent substrates in the condensation reaction and behave similarly to native substrates. Co-crystal structures show C domain-substrate interactions, and suggest that the catalytic histidine's principle role is to position the α-amino group for nucleophilic attack. Structural insight provided by these co-complexes also allowed us to alter the substrate specificity profile of the reaction with a single point mutation.


Assuntos
Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Imunossupressores/metabolismo , Peptídeo Sintases/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Antibacterianos/química , Antineoplásicos/química , Imunossupressores/química , Estrutura Molecular , Peptídeo Sintases/química , Peptídeos/química , Peptídeos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Especificidade por Substrato
7.
PLoS One ; 10(6): e0128569, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042597

RESUMO

Cereulide synthetase is a two-protein nonribosomal peptide synthetase system that produces a potent emetic toxin in virulent strains of Bacillus cereus. The toxin cereulide is a depsipeptide, as it consists of alternating aminoacyl and hydroxyacyl residues. The hydroxyacyl residues are derived from keto acid substrates, which cereulide synthetase selects and stereospecifically reduces with imbedded ketoreductase domains before incorporating them into the growing depsipeptide chain. We present an in vitro biochemical characterization of cereulide synthetase. We investigate the kinetics and side chain specificity of α-keto acid selection, evaluate the requirement of an MbtH-like protein for adenylation domain activity, assay the effectiveness of vinylsulfonamide inhibitors on ester-adding modules, perform NADPH turnover experiments and evaluate in vitro depsipeptide biosynthesis. This work also provides biochemical insight into depsipeptide-synthesizing nonribosomal peptide synthetases responsible for other bioactive molecules such as valinomycin, antimycin and kutzneride.


Assuntos
Depsipeptídeos/biossíntese , Substâncias Macromoleculares/metabolismo , Peptídeo Sintases/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Bacillus cereus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Cromatografia Líquida , Depsipeptídeos/antagonistas & inibidores , Depsipeptídeos/química , Depsipeptídeos/metabolismo , Difosfatos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/metabolismo , Cetoácidos/metabolismo , Cinética , Espectrometria de Massas , NADP/metabolismo , Peptídeo Sintases/isolamento & purificação , Biossíntese de Proteínas/efeitos dos fármacos , Estrutura Terciária de Proteína , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA