Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542986

RESUMO

In this work, we successfully integrated fluorescent nanodiamonds (FNDs) and lanthanide ion-doped upconversion nanoparticles (UCNPs) in a nanocomposite structure for simultaneous optical temperature sensing. The effective integration of FND and UCNP shells was confirmed by employing high-resolution TEM imaging, X-ray diffraction, and dual-excitation optical spectroscopy. Furthermore, the synthesized ND@UCNP nanocomposites were tested by making simultaneous optical temperature measurements, and the detected temperatures showed excellent agreement within their sensitivity limit. The simultaneous measurement of temperature using two different modalities having different sensing physics but with the same composite nanoparticles inside is expected to greatly improve the confidence of nanoscale temperature measurements. This should resolve some of the controversy surrounding nanoscale temperature measurements in biological applications.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668180

RESUMO

In this work, we present an advancement in the encapsulation of lithium yttrium fluoride-based (YLiF4:Yb,Er) upconversion nanocrystals (UCNPs) with silica (SiO2) shells through a reverse microemulsion technique, achieving UCNPs@SiO2 core/shell structures. Key parameters of this approach were optimized to eliminate the occurrence of core-free silica particles and ensure a controlled silica shell thickness growth on the UCNPs. The optimal conditions for this method were using 6 mg of UCNPs, 1.5 mL of Igepal CO-520, 0.25 mL of ammonia, and 50 µL of tetraethyl orthosilicate (TEOS), resulting in a uniform silica shell around UCNPs with a thickness of 8 nm. The optical characteristics of the silica-encased UCNPs were examined, confirming the retention of their intrinsic upconversion luminescence (UC). Furthermore, we developed a reliable strategy to avoid the coencapsulation of multiple UCNPs within a single silica shell. This approach led to a tenfold increase in the UC luminescence of the annealed particles compared to their nonannealed counterparts, under identical silica shell thickness and excitation conditions. This significant improvement addresses a critical challenge and amplifies the applicability of the resulting UCNPs@SiO2 core/shell structures in various fields.

3.
Materials (Basel) ; 16(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374538

RESUMO

Upconversion Nanoparticles (UCNPs) have attracted exceptional attention due to their great potential in high-contrast, free-background biofluorescence deep tissue imaging and quantum sensing. Most of these interesting studies have been performed using an ensemble of UCNPs as fluorescent probes in bioapplications. Here, we report a synthesis of small and efficient YLiF4:Yb,Er UCNPs for single-particle imaging as well as sensitive optical temperature sensing. The reported particles demonstrated a bright and photostable upconversion emission at a single particle level under a low laser intensity excitation of 20 W/cm2. Furthermore, the synthesized UCNPs were tested and compared to the commonly used two-photon excitation QDs and organic dyes and showed a nine times better performance at a single particle level under the same experimental conditions. In addition, the synthesized UCNPs demonstrated sensitive optical temperature sensing at a single particle level within the biological temperature range. The good optical properties of single YLiF4:Yb,Er UCNPs open an avenue for small and efficient fluorescent markers in imaging and sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA