Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110697

RESUMO

The increased interest in the transition from liquid to solid polymer electrolytes (SPEs) has driven enormous research in the area polymer electrolyte technology. Solid biopolymer electrolytes (SBEs) are a special class of SPEs that are obtained from natural polymers. Recently, SBEs have been generating much attention because they are simple, inexpensive, and environmentally friendly. In this work, SBEs based on glycerol-plasticized methylcellulose/pectin/potassium phosphate (MC/PC/K3PO4) are investigated for their potential application in an electrochemical double-layer capacitor (EDLC). The structural, electrical, thermal, dielectric, and energy moduli of the SBEs were analyzed via X-ray diffractometry (XRD), Fourier transforms infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), transference number measurement (TNM), and linear sweep voltammetry (LSV). The plasticizing effect of glycerol in the MC/PC/K3PO4/glycerol system was confirmed by the change in the intensity of the samples' FTIR absorption bands. The broadening of the XRD peaks demonstrates that the amorphous component of SBEs increases with increasing glycerol concentration, while EIS plots demonstrate an increase in ionic conductivity with increasing plasticizer content owing to the formation of charge-transfer complexes and the expansion of amorphous domains in polymer electrolytes (PEs). The sample containing 50% glycerol has a maximal ionic conductivity of about 7.5 × 10-4 scm-1, a broad potential window of 3.99 V, and a cation transference number of 0.959 at room temperature. Using the cyclic voltammetry (CV) test, the EDLC constructed from the sample with the highest conductivity revealed a capacitive characteristic. At 5 mVs-1, a leaf-shaped profile with a specific capacitance of 57.14 Fg-1 was measured based on the CV data.

2.
Sci Rep ; 14(1): 5589, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453990

RESUMO

The utilization of plants for the production of metallic nanoparticles is gaining significant attention in research. In this study, we conducted phytochemical screening of Alstonia scholaris (A. scholaris) leaves extracts using various solvents, including chloroform, ethyl acetate, n-hexane, methanol, and water. Our findings revealed higher proportions of flavonoids and alkaloids in both solvents compared to other phytochemical species. In the methanol, extract proteins, anthraquinone and reducing sugar were not detected. On the other hand, the aqueous extract demonstrated the presence of amino acids, reducing sugar, phenolic compounds, anthraquinone, and saponins. Notably, ethyl acetate and chloroform extracts displayed the highest levels of bioactive compounds among all solvents. Intrigued by these results, we proceeded to investigate the antibacterial properties of the leaf extracts against two major bacterial strains, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). All extracts exhibited significant zones of inhibition against both bacterial isolates, with S. aureus showing higher susceptibility compared to E. coli. Notably, the methanol extract displayed the most potent I hibitory effect against all organisms. Inspired by the bioactivity of the methanol extract, we employed it as a plant-based material for the green synthesis of copper nanoparticles (Cu-NPs). The synthesized Cu-NPs were characterized using Fourier infrared spectroscopy (FT-IR), UV-visible spectroscopic analysis, and scanning electron microscopy (SEM). The observed color changes confirmed the successful formation of Cu-NPs, while the FTIR analysis matched previously reported peaks, further verifying the synthesis. The SEM micrographs indicated the irregular shapes of the surface particles. From the result obtained by energy dispersive X-ray spectroscopic analysis, Cu has the highest relative abundance of 67.41 wt%. Confirming the purity of the Cu-NPs colloid. These findings contribute to the growing field of eco-friendly nanotechnology and emphasize the significance of plant-mediated approaches in nanomaterial synthesis and biomedical applications.


Assuntos
Acetatos , Alstonia , Anti-Infecciosos , Nanopartículas Metálicas , Cobre/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Escherichia coli , Metanol/farmacologia , Clorofórmio/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Compostos Fitoquímicos/farmacologia , Solventes/farmacologia , Açúcares/farmacologia , Antraquinonas/farmacologia , Testes de Sensibilidade Microbiana
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122929, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37267834

RESUMO

In this work, we investigated the impact of the concentration on the spectral and amplified spontaneous emission spectra (ASE) of a conducting polymer of poly(2,5-di(3,7-dimethyloctyloxy) cyanoterephthalylidene) (PDDCP) in tetrahydrofuran (THF). The findings demonstrate that the absorption spectra exhibited two peaks at 330 and 445 nm across the concentration range (1-100 µg/mL). Irrespective of the optical density, altering the concentrations did not affect the absorption spectrum. Also, the analysis indicated that the polymer did not agglomerate in the ground state for any of the concentrations mentioned. However, changes in the polymer had a substantial effect on its photoluminescence spectrum (PL), likely due to the formation of exciplexes and excimers. Also, the energy band gap also varied as a function of concentration. At a certain concentration (25 µg/mL) and pump pulse energy (3 mJ), PDDCP produced a superradiant ASE peak at 565 nm with a remarkably narrow full width at half maximum (FWHM). These findings can provide insight into the optical characteristics of PDDCP, which may have potential applications in the fabrication of tunable solid-state laser rods, Schottky diodes, and solar cell applications.


Assuntos
Lasers , Polímeros
4.
Nanomaterials (Basel) ; 13(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36678106

RESUMO

The applications of silver nanowires (AgNWs) are clearly relevant to their purity and morphology. Therefore, the synthesis parameters should be precisely adjusted in order to obtain AgNWs with a high aspect ratio. Consequently, controlling the reaction time versus the reaction temperature of the AgNWs is crucial to synthesize AgNWs with a high crystallinity and is important in fabricating optoelectronic devices. In this work, we tracked the morphological alterations of AgNWs during the growth process in order to determine the optimal reaction time and temperature. Thus, here, the UV-Vis absorption spectra were used to investigate how the reaction time varies with the temperature. The reaction was conducted at five different temperatures, 140-180 °C. As a result, an equation was developed to describe the relationship between them and to calculate the reaction time at any given reaction temperature. It was observed that the average diameter of the NWs was temperature-dependent and had a minimum value of 23 nm at a reaction temperature of 150 °C. A significant purification technique was conducted for the final product at a reaction temperature of 150 °C with two different speeds in the centrifuge to remove the heavy and light by-products. Based on these qualities, a AgNWs-based porous Si (AgNWs/P-Si) device was fabricated, and current-time pulsing was achieved using an ultra-violet (UV) irradiation of a 375 nm wavelength at four bias voltages of 1 V, 2 V, 3 V, and 4 V. We obtained a high level of sensitivity and detectivity with the values of 2247.49% and 2.89 × 1012 Jones, respectively. The photocurrent increased from the µA range in the P-Si to the mA range in the AgNWs/P-Si photodetector due to the featured surface plasmon resonance of the AgNWs compared to the other metals.

5.
Biosens Bioelectron ; 241: 115701, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757510

RESUMO

We present a portable multiplexed biosensor platform based on the extended gate field-effect transistor and demonstrate its amplified response thanks to gold nanoparticle-based bioconjugates introduced as a part of the immunoassay. The platform comprises a disposable chip hosting an array of 32 extended gate electrodes, a readout module based on a single transistor operating in constant charge mode, and a multiplexer to scan sensing electrodes one-by-one. Although employing only off-the-shelf electronic components, our platform achieves sensitivities comparable to fully customized nanofabricated potentiometric sensors. In particular, it reaches a detection limit of 0.2 fM for the pure molecular assay when sensing horseradish peroxidase-linked secondary antibody (∼0.4 nM reached by standard microplate methods). Furthermore, with the gold nanoparticle bioconjugation format, we demonstrate ca. 5-fold amplification of the potentiometric response compared to a pure molecular assay, at the detection limit of 13.3 fM. Finally, we elaborate on the mechanism of this amplification and propose that nanoparticle-mediated disruption of the diffusion barrier layer is the main contributor to the potentiometric signal enhancement. These results show the great potential of our portable, sensitive, and cost-efficient biosensor for multidimensional diagnostics in the clinical and laboratory settings, including e.g., serological tests or pathogen screening.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Técnicas Biossensoriais/métodos , Potenciometria , Imunoensaio , Eletrodos
6.
Polymers (Basel) ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679278

RESUMO

Corrosion prevention has been a global phenomenon, particularly in metallic and construction engineering. Most inhibitors are expensive and toxic. Therefore, developing nontoxic and cheap corrosion inhibitors has been a way forward. In this work, L-arginine was successfully grafted on chitosan by the thermal technique using a reflux condenser. This copolymer was characterized by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The corrosion inhibition performance of the composite polymer was tested on mild steel in 0.5M HCl by electrochemical methods. The potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) results were consistent. The inhibition efficiency at optimum concentration rose to 91.4%. The quantum chemical calculation parameters show good properties of the material as a corrosion inhibitor. The molecular structure of the inhibitor was subjected to density functional theory (DFT) to understand its theoretical properties, and the results confirmed the inhibition efficiency of the grafted polymer for corrosion prevention.

7.
Materials (Basel) ; 16(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36902983

RESUMO

Herein, we investigated the applicability of thick film and bulk disk forms of aluminum-doped zinc oxide (AZO) for low-dose X-ray radiation dosimetry using the extended gate field effect transistor (EGFET) configuration. The samples were fabricated using the chemical bath deposition (CBD) technique. A thick film of AZO was deposited on a glass substrate, while the bulk disk form was prepared by pressing the collected powders. The prepared samples were characterized via X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) to determine the crystallinity and surface morphology. The analyses show that the samples are crystalline and comprise nanosheets of varying sizes. The EGFET devices were exposed to different X-ray radiation doses, then characterized by measuring the I-V characteristics pre- and post-irradiation. The measurements revealed an increase in the values of drain-source currents with radiation doses. To study the detection efficiency of the device, various bias voltages were also tested for the linear and saturation regimes. Performance parameters of the devices, such as sensitivity to X-radiation exposure and different gate bias voltage, were found to depend highly on the device geometry. The bulk disk type appears to be more radiation-sensitive than the AZO thick film. Furthermore, boosting the bias voltage increased the sensitivity of both devices.

8.
Nanomaterials (Basel) ; 13(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615988

RESUMO

Herein, we report on a smart biosensing platform that exploits gold nanoparticles (AuNPs) functionalized through ssDNA self-assembled monolayers (SAM) and the DNA-directed immobilization (DDI) of DNA-protein conjugates; a novel, high-sensitivity optical characterization technique based on a miniaturized gel electrophoresis chip integrated with online thermal lens spectrometry (MGEC-TLS), for the high-sensitivity detection of antigen binding events. Specifically, we characterized the physicochemical properties of 20 nm AuNPs covered with mixed SAMs of thiolated single-stranded DNA and bio-repellent molecules, referred to as top-terminated oligo-ethylene glycol (TOEG6), demonstrating high colloidal stability, optimal binder surface density, and proper hybridization capacity. Further, to explore the design in the frame of cancer-associated antigen detection, complementary ssDNA fragments conjugated with a nanobody, called C8, were loaded on the particles and employed to detect the presence of the HER2-ECD antigen in liquid. At variance with conventional surface plasmon resonance detection, MGEC-TLS characterization confirmed the capability of the assay to titrate the HER2-ECD antigen down to concentrations of 440 ng/mL. The high versatility of the directed protein-DNA conjugates immobilization through DNA hybridization on plasmonic scaffolds and coupled with the high sensitivity of the MGEC-TLS detection qualifies the proposed assay as a potential, easily operated biosensing strategy for the fast and label-free detection of disease-relevant antigens.

9.
J Chromatogr A ; 1657: 462596, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34689905

RESUMO

Online thermal lens microscopy (TLM) coupled with gel electrophoresis (GE) can represent a powerful tool for separating and detecting a wide range of biomaterials. Unlike slab gel electrophoresis (SGE), the proposed method does not require prolonged procedure between separation and detection. In this work, we developed an online monitoring GE system to separate and detect nanosized materials. The design is based on a homemade and cost-effective miniaturized GE chip (MGEC) integrated with real-time TLM detection through microcontroller-based digitization board platform. To validate the feasibility and practicability of the proposed approach, we evaluated its separation capability via employing synthesized Fe3O4-Au core-shell nanoparticles (NPs) which served remarkably for the proof-of-concept. The optimum conditions for the separation process were achieved through optimization of the excitation power as 30 mW, detection position at 24 mm, the concentration of agarose gel 0.5 % w/v, and 37.5 V/cm as the effective electric field strength. The findings showed that two populations of Fe3O4-Au, core-shell, and uncapped Fe3O4 NPs, were effectively separated in less than eleven minutes, demonstrating rapid assessment of the nanomaterial production quality. Moreover, other characterization techniques such as HRTEM and EDX were employed to confirm the presence of the two dissimilar kinds of NPs separated using MGEC-TLM. The sensitivity of the method was demonstrated by determining the limit of detection (23 pM) for 10 nm AuNPs. It is envisaged that our presented system enables rapid, economical, low volume of reagents consumption and high potential analysis for quality test in various bioanalytical and nanotechnological applications.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Eletroforese , Ouro , Microscopia Eletrônica de Transmissão
10.
Nanomaterials (Basel) ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34947531

RESUMO

Monoclonal antibody-based immunotherapy is one of the pillars of cancer treatment. However, for an efficient and personalized approach to the therapy, a quantitative evaluation of the right dose for each patient is required. In this study, we developed a simple, label-free, and rapid approach to quantify Trastuzumab, a humanized IgG1 monoclonal antibody used against human epidermal growth factor receptor 2 (HER2), overexpressed in breast cancer patients, based on localized surface plasmon resonance (LSPR). The central idea of this work was to use gold nanoparticles (AuNPs) as plasmonic scaffolds, decorated with HER2 binders mixed with oligo-ethylene glycol (OEG) molecules, to tune the surface density of the attached macromolecules and to minimize nonspecific binding events. Specifically, we characterized and optimized a self-assembled monolayer of mixed alkylthiols terminated with nitrilotriacetic acid (NTA), and OEG3 as a spacing ligand to achieve both excellent dispersibility and high reliability in protein immobilization. The successful immobilization of histidine-tagged HER2 (His-tagged HER2) on NTA via cobalt (II) chelates was demonstrated, confirming the fully functional attachment of the proteins to the AuNP surface. The proposed design demonstrates the capability of producing a clear readout that enables the transduction of a Trastuzumab/HER2 binding event into optical signals based on the wavelength shifts in LSPR, which allowed for detecting clinically relevant concentrations of Trastuzumab down to 300 ng/mL in the buffer and 2 µg/mL in the diluted serum. This strategy was found to be fast and highly specific to Trastuzumab. These findings make the present platform an auspicious tool for developing affordable bio-nanosensors.

11.
Sci Rep ; 10(1): 17148, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051571

RESUMO

The search for plant extracts with highly antimicrobial activity has been increased nowadays. This study evaluated the antimicrobial activity of Pulicaria crispa (Forsk.) Oliv., and Pulicaria undulata (L.) C.A.Mey., which have been used traditionally in Sudan as insect replants. The antimicrobial activity was evaluated against six pathogenic microorganisms, four bacteria (two Gram-positive; Bacillus subtilis and Staphylococcus aureus, two Gram-negative; Escherichia coli, and Pseudomonas aeruginosa), and two fungi (Aspergillus niger and Candida albicans) using disc diffusion method. The extraction of the crude extracts was done by maceration. The essential oils were extracted by hydro-distillation. Phytochemical screening was done using reference method. Essential oils were analyzed using Gas Chromatography Mass Spectrometry. The results indicated that all used the microorganisms were sensitive to the plants extracts. Results of the preliminary phytochemical screening showed the presence of saponins, comarins, tannins, sterols, and triterpenes, and absence of alkaloids, anthraquinones, and flavonoids. Twenty-eight and forty-five constituents were identified in P. crispa and P. undulata, essential oils, respectively. The main constituents in the essential oil of P. crispa were 1,4-ditert butylbenzene (22.81%), caryophyllene (13.19%), carvone (11.80%), and neryl(s)-2-methylbutanoate (10.33%), and for P. undulata were camphor (44.48%), and thymyl acetate (10.31%). Data from this study could be used for developing of natural bioactive agents to improve human health.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Óleos Voláteis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pulicaria/química , Aspergillus niger/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Testes de Sensibilidade Microbiana/métodos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Sudão
12.
Polymers (Basel) ; 12(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158093

RESUMO

To non-invasively monitor and screen for diabetes in patients, there is need to detect low concentration of acetone vapor in the range from 1.8 ppm to 5 ppm, which is the concentration range of acetone vapor in diabetic patients. This work presents an investigation for the utilization of chitosan-polyethylene glycol (PEG)-based surface plasmon resonance (SPR) sensor in the detection of trace concentration acetone vapor in the range of breath acetone in diabetic subjects. The structure, morphology, and elemental composition of the chitosan-PEG sensing layer were characterized using FTIR, UV-VIS, FESEM, EDX, AFM, and XPS methods. Response testing was conducted using low concentration of acetone vapor in the range of 0.5 ppm to 5 ppm using SPR technique. All the measurements were conducted at room temperature and 50 mL/min gas flow rate. The sensor showed good sensitivity, linearity, repeatability, reversibility, stability, and high affinity toward acetone vapor. The sensor also showed better selectivity to acetone compared to methanol, ethanol, and propanol vapors. More importantly, the lowest detection limit (LOD) of about 0.96 ppb confirmed the applicability of the sensor for the non-invasive monitoring and screening of diabetes.

13.
Dose Response ; 17(2): 1559325819855532, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236089

RESUMO

The purpose of this study is to investigate the potentiality of Gafchromic external beam therapy 3 (EBT3) film to measure low dosage of solar ultraviolet (SUV; 0-10 600 mJ/cm2) and x-ray (0-750 mGy) radiation. In this experiment, 2 groups of EBT3 films were prepared with size 2 cm × 1 cm. The first group of films was exposed by incremental SUV dose in the middle of the day. The other group was irradiated by x-ray at 100 kVp, 100 mA, and 2 S of tube voltage, tube current, and exposure time, respectively. The measured SUV consists of 90% ultraviolet A (UVA) and 10% ultraviolet B. The film discoloration was represented by visible absorbance spectroscopy technique using Jaz spectrometer from Ocean Optics Inc. Simple linear regression produced high accuracy with coefficients of determination, r 2 of 0.9804 and root mean square error (RMSE) of 434.88 mJ/cm2 for the measurement of SUV dose. On the other hand, r 2 of 0.98 and RMSE of 31 mGy was produced for the measurement of x-ray dose. The application of multiple linear regression enhanced the measurement accuracy with R 2 of 99% and 99.7% and RMSE of 327.06 mJ/cm2 and 15.045 mGy for SUV and x-ray dose, respectively. The spectral analysis shows a promising measurement at selected wavelengths for SUV and x-ray dose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA