Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Infect Dis ; 75(1): e1-e9, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35435222

RESUMO

BACKGROUND: During the ongoing coronavirus disease 2019 (COVID-19) pandemic, many individuals were infected with and have cleared the virus, developing virus-specific antibodies and effector/memory T cells. An important unanswered question is what levels of T-cell and antibody responses are sufficient to protect from the infection. METHODS: In 5340 Moscow residents, we evaluated anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin M (IgM)/immunoglobulin G (IgG) titers and frequencies of the T cells specific to the membrane, nucleocapsid, and spike proteins of SARS-CoV-2, using interferon gamma (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay. Additionally, we evaluated the fractions of virus-specific CD4+ and CD8+ T cells using intracellular staining of IFN-γ and interleukin 2 followed by flow cytometry. We analyzed the COVID-19 rates as a function of the assessed antibody and T-cell responses, using the Kaplan-Meier estimator method, for up to 300 days postinclusion. RESULTS: We showed that T-cell and antibody responses are closely interconnected and are commonly induced concurrently. Magnitudes of both responses inversely correlated with infection probability. Individuals positive for both responses demonstrated the highest levels of protectivity against the SARS-CoV-2 infection. A comparable level of protection was found in individuals with antibody response only, whereas the T-cell response by itself granted only intermediate protection. CONCLUSIONS: We found that the contribution of the virus-specific antibodies to protection against SARS-CoV-2 infection is more pronounced than that of the T cells. The data on the virus-specific IgG titers may be instructive for making decisions in personalized healthcare and public anti-COVID-19 policies. Clinical Trials Registration. NCT04898140.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Imunoglobulina G , Estudos Prospectivos
2.
Stem Cell Res ; 74: 103298, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38176367

RESUMO

X-linked adrenoleukodystrophy is a metabolic disease associated with mutations in the ABCD1 gene (ATP-binding cassette subfamily D). Numerous pathogenic variants in this gene lead to a wide spectrum of symptoms, including adrenal insufficiency, slowly progressive dying-back axonopathy and demyelination of the central nervous system in specific phenotypes. The induced pluripotent stem cell line was derived from a patient diagnosed with x-ALD. Due to the complexity of developing working therapy based on animal models, it's crucial to obtain the cell model directly from patients. Peripheral blood mononuclear cells (PBMCs) isolated from the donor's whole blood were reprogrammed into induced pluripotent stem cells and then characterized. Expression of pluripotency markers SSEA4, TRA-1-60, SOX2, OCT4 is proven quantitatively and qualitatively, iPSCs demonstrate the ability to differentiate into three germ layers and the absence of Sendai virus expression factors.


Assuntos
Adrenoleucodistrofia , Animais , Humanos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Leucócitos Mononucleares/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Mutação , Fenótipo
3.
Stem Cell Res ; 80: 103512, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39083856

RESUMO

Pathogenic variants in the KCNV2 gene can cause a rare retinal dystrophy that can be inherited recessively, known as cone dystrophy with supernormal rod response (CDSRR). CDSRR leads to specific changes in photoreceptors' electroretinogram response, especially in the rods, poor visual acuity, photophobia, and even maculopathy. The derived iPSC lines from patients with CDSRR may pave the way for apprehension of the pathogenetic mechanism and drug development using in vitro models. PBMCs were established into induced pluripotent stem cells and then characterized by confirming the expression of pluripotency markers, demonstrating the ability to differentiate into the three germ layers, and obtaining normal karyotyping.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mutação , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Linhagem Celular , Heterozigoto , Diferenciação Celular , Masculino
4.
Stem Cell Res ; 75: 103311, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237426

RESUMO

CDC73-related disorders are inherited in an autosomal dominant manner. An individual with a CDC73-related disorder may have inherited the disorder from an affected parent or developed it as the result of a de novo pathogenic variant of CDC73. The iPSC line was obtained by reprogramming the PBMCs of a patient with a heterozygous type mutation of the CDC73 gene. This cell line could be useful to scrutinize and study the development of CDC73-associated parathyroid carcinoma.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias das Paratireoides , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Supressoras de Tumor/genética , Mutação/genética , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/metabolismo , Neoplasias das Paratireoides/patologia , Fatores de Transcrição/genética
5.
J Clin Med ; 13(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39200733

RESUMO

Background/Objectives: Cone dystrophy with supernormal rod response (CDSRR) is a rare autosomal recessive retinal disorder characterized by a delayed and markedly decreased photoreceptor response. In this article, we aim to describe the clinical course and associated molecular findings in children with cone dystrophy with supernormal rod response associated with recessive mutations in the KCNV2 gene, which encodes a subunit (Kv8.2) of the voltage-gated potassium channel. Methods: The genetic testing of two patients included the next-generation sequencing of a retinal dystrophy panel and direct Sanger sequencing to confirm KCNV2 gene variants, in addition to an electroretinogram (ERG) and spectral domain optical coherence tomography (SD-OCT). Results: Cone dystrophy with supernormal rod response is associated with identified variants in the KCNV2 gene. The genetic analysis of the first case identified a compound heterozygous mutation in the KCNV2 gene, including a de novo nonsense duplication at cDNA position 1109, which led to the premature termination of the p.Lys371Ter codon in the second extracellular domain of the protein. Two patients showed changes in the full-field electroretinogram, especially in the first case, which demonstrated a close to supernormal total electroretinogram amplitude. This study increased the range of the KCNV2 mutation database, added an unreported de novo substitution pattern to KCNV2 gene variants, and linked it to the evaluated clinical studies. Conclusions: The initial clinical manifestations were varied, but both patients presented with hypermetropia and slight exotropia. The ERG findings are characteristic of KCNV2 mutations, and patients exhibited an increased b-wave latency in DA3.0 ERG (combined rod-cone response).

6.
Cells ; 13(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39451224

RESUMO

Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.


Assuntos
Dependovirus , Terapia Genética , Doenças Retinianas , Dependovirus/genética , Terapia Genética/métodos , Humanos , Animais , Doenças Retinianas/terapia , Doenças Retinianas/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Retina/patologia , Retina/metabolismo , Camundongos
7.
Stem Cell Res ; 69: 103099, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121194

RESUMO

Cone dystrophy with supernormal rod response (CDSRR) is associated with pathogenic variants of the KCNV2 gene that result in severe symptoms, including color vision defects, decreased visual acuity, and specific changes in electroretinogram responses. Two iPSC lines were obtained from two patients in the same family with different types of mutations in the KCNV2 gene. These lines could serve as a useful model for studying the pathogenetic mechanism and treatment development for CDSRR. PBMCs from donors have been reprogrammed into iPSC lines. Derived clones were characterized with mutation sequencing, analysis of common pluripotency-associated markers at the protein levels, and in vitro differentiation studies.


Assuntos
Distrofia de Cones , Células-Tronco Pluripotentes Induzidas , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Células Fotorreceptoras Retinianas Bastonetes , Mutação/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA