Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Prosthet Dent ; 129(5): 788-795, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34602276

RESUMO

STATEMENT OF PROBLEM: Additive manufacturing (AM) is a technology that has been recently introduced into dentistry for fabricating dental devices, including interim restorations. Printing orientation is one of the important and influential factors in AM that affects the accuracy, surface roughness, and mechanical characteristics of printed objects. However, the optimal print orientation for best bond strength to 3D-printed interim restorations remains unclear. PURPOSE: The purpose of this in vitro study was to evaluate the effect of printing orientation on the surface roughness, topography, and shear bond strength of AM interim restorations to composite resin. MATERIAL AND METHODS: Disk-shaped specimens (Ø20×10 mm) were designed by a computer-aided design software program (Geomagic freeform), and a standard tessellation language (STL) file was obtained. The STL file was used for the AM of 60 disks in 3 different printing orientations (0, 45, and 90 degrees) by using E-Dent 400 C&B material. An autopolymerizing interim material (Protemp 4) was used as a control group (CNT), and specimens were fabricated by using the injecting mold technique (n=20). Surface roughness (Sa, Sz parameters) was measured by using a 3D-laser scanning confocal microscope (CLSM) at ×20 magnification. For shear bond testing, the specimens were embedded in polymethylmethacrylate autopolymerized resin (n=20). A flowable composite resin was bonded by using an adhesive system. The specimens were stored in distilled water at 37 °C for 1 day and thermocycled 5000 times. The shear bond strength (SBS) was measured at a crosshead speed of 1 mm/min. The data were analyzed by 1-way ANOVA, followed by the Tukey HSD test (α=.05). RESULTS: The 45-degree angulation printing group reported the highest Sa, followed by the CNT and the 90-degree and 0-degree angulations with significant difference between them (P<.001). The CNT showed the highest Sz, followed by the 45-degree, 90-degree, and 0-degree angulations. The mean ±standard deviation SBS was 28.73 ±5.82 MPa for the 90-degree, 28.21 ±10.69 MPa for the 45-degree, 26.21 ±11.19 MPa for the 0-degree angulations and 25.39 ±4.67 MPa for the CNT. However, no statistically significant difference was found in the SBS among the groups (P=.475). CONCLUSIONS: Printing orientation significantly impacted the surface roughness of 3D-printed resin for interim restorations. However, printing orientation did not significantly affect the bond strength with composite resin.


Assuntos
Colagem Dentária , Colagem Dentária/métodos , Teste de Materiais , Materiais Dentários/química , Resinas Compostas/química , Polimetil Metacrilato , Impressão Tridimensional , Propriedades de Superfície , Resistência ao Cisalhamento , Cimentos de Resina/química
2.
Sensors (Basel) ; 21(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064860

RESUMO

The aims of this study were to investigate the feasibility of using a DLP 3D printer to fabricate a crown using scan data before tooth preparation, and to investigate the effect of additional heat curing on the mechanical properties of the urethane dimethacrylate (UDMA)-based 3D printed crown. A silicone fitting test was used to evaluate the internal adaptation of the crown. For ultimate tensile strength (UTS), the specimens were tested after 24 h storage in water at 37 °C or after 10,000 thermal cycles (TC) between 5-55 °C. For shear bond strength (SBS), a PMMA self-curing resin was filled into a Teflon ring mounted onto the polished UDMA specimens. The internal adaptation of the crowns fabricated with cement space was better than those with no cement space. There was no significant difference in UTS between light-curing and additional heat-curing groups after TC. As for the SBS, there was a significant difference after TC between the two groups. Crowns can be fabricated by a DLP 3D printer using pre-preparation scans with a cement space defined in the software. Additional heat curing of the UDMA-based crown reduced residual monomer and improved its mechanical properties.

3.
J Mech Behav Biomed Mater ; 100: 103390, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31563081

RESUMO

PURPOSE: Digital technology has advanced and changed clinical dentistry. The utility of various thermoplastic materials for 3D dental printing has not been thoroughly explored. The aim of this study was to evaluate mechanical properties of a new thermoplastic elastomer material applicable for a dental 3D printer. MATERIAL & METHOD: Three thermoplastic elastomers: ABS, PLA and an acrylic block copolymer (KUR) and a dental self-curing resin (PMMA) were used in this study. Physical properties were evaluated by measuring water sorption (WS), dimensional accuracy (DA), ultimate tensile strength (UTS) and shear bond strength (SBS) to PMMA. For WS and DA, specimens were measured by weight and length, respectively after desiccation and immersion in 37 °C distilled water for 1 day, 1 week and 1 month. For UTS, the specimens were prepared according to ISO 527-2-5A and loaded to test the UTS at a crosshead speed of 5 mm/min after storage in 37 °C distilled water for 24 h and 1 month. For SBS, MMA self-curing resin was filled in a Teflon ring which was mounted onto polished specimens to make the adhesive area. The prepared specimens were tested for SBS after storage in 37 °C distilled water for 24 h and 37 °C distilled water for 24 h followed by 10000 times thermal cycling. The data were analyzed by repeated measures ANOVA, two-way ANOVA and t-test with Bonferroni correction at 95% confidence level. RESULT: The WS value of PMMA was significantly higher than those of the other materials after 1 day (p < 0.05), while the WS values of KUR were significantly higher than those of the other materials after 1 week and 1 month (p < 0.05). The DA values were influenced by water storage periods except for KUR. There were no significant differences among ABS, PLA and PMMA in SBS before thermal cycling (p > 0.05). The SBS of KUR was the lowest among the materials before thermal cycling (p < 0.05). However, there was no significant difference between PMMA and KUR after thermal cycling (p > 0.05). CONCLUSION: The acrylic block copolymer demonstrated acceptable physical properties, suggesting the potential to be a material to make provisional restorations for a dental 3D printer.


Assuntos
Materiais Dentários/química , Restauração Dentária Permanente/instrumentação , Restauração Dentária Permanente/métodos , Elastômeros/química , Teste de Materiais , Impressão Tridimensional , Acrilatos/química , Resinas Compostas/química , Colagem Dentária , Polímeros/química , Polimetil Metacrilato/química , Cimentos de Resina/química , Resistência ao Cisalhamento , Estresse Mecânico , Propriedades de Superfície , Temperatura , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA