Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 28(4): 2091-2097, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33911924

RESUMO

Raw milk is one of the most important vehicles for transmitting various pathogens, especially Escherichia coli (E. coli). Multidrug-resistant pathogens are highly prevalent among mastitic cows in various dairy farms worldwide. Therefore, our current study is based on the identification of E. coli from mastitic cow's milk and their resistance to various antibacterial agents. As well, the impact of camel's urine on multi-drug resistant E. coli were also evaluated. Thirty-three E. coli isolates were recovered from 254 milk samples. All strains were initially identified phenotypically by culturing on specific media and Vitek 2 Compact System. The protein fingerprinting technique was used as a confirmatory method. The Stx1, Stx2 and eae genes were also verified by polymerase chain reaction (PCR). The antimicrobial resistance of E. coli strains was tested by the Vitek 2 AST-GN69 cards. Thirty multi-drug resistant E. coli strains (20 from mastitic milk and 10 from clinical samples) were laboratory tested with different concentrations (100%, 75%, 50% and 25%) of virgin and breeding camel's urine, using the paper disc diffusion method. Our findings showed that 93.94% of E. coli strains were recognized by the Vitek™ 2 system. The results of proteomic investigation illustrated that 100% of E. coli strains were identified at log values ≥2.00. The genotypic identification of the three virulence genes illustrated that 90.1%, 63.64%, and 30.55% of E. coli strains were able to carry the Stx1, eae, and Stx2 genes, respectively. Most strains of E. coli showed strong resistance against cefazolin (78.79%), ceftazidime (66.67%), cefotaxime (60.61%), ceftriaxone (54.55%), and cefepime (39.40%). The results of the antibacterial effect of camel's urine revealed that the mean inhibitory zones of virgin camel's urine were 28 mm, 17 mm, and 14 mm, for the concentrations of 100%, 75%, and 50%, respectively. Whereas; the inhibitory zones for the breeding camel's urine were 18 mm, 0 mm, and 0 mm, for the concentrations of 100%, 75%, and 50%, respectively. We concluded that the majority of E. coli strains were able to harbor some virulence genes and resist many antibiotics. Our study also provided a robust evidence that the camel's urine, particularly from the virgin camels has robust antimicrobial activity against multidrug-resistant E. coli strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA