Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(9): 1470-1481, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37582359

RESUMO

Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the ß-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.


Assuntos
Luxação do Quadril , Osteosclerose , Tanquirases , Humanos , Tanquirases/genética , Tanquirases/metabolismo , Proteína Axina/genética , Proteína Axina/metabolismo , Via de Sinalização Wnt/genética , Osteosclerose/genética , beta Catenina/metabolismo
2.
Brain ; 147(4): 1436-1456, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37951597

RESUMO

The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders.


Assuntos
Deficiência Intelectual , Microcefalia , Transtornos dos Movimentos , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Feminino , Humanos , Masculino , Transportadores de Cassetes de Ligação de ATP , Deficiência Intelectual/genética , Transtornos dos Movimentos/genética , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Tremor , Peixe-Zebra , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
3.
Am J Med Genet A ; 188(1): 83-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515413

RESUMO

Secondary findings (SF) are defined as genetic conditions discovered unintentionally during an evaluation of raw data for another disease. We aimed to identify the rate of secondary genetic findings in the Saudi population in the 59 genes of the American College of Medical Genetics and Genomics (ACMG) list. In our study, the raw data of 1254 individuals, generated from exome sequencing for clinical purposes, were studied. Variants detected in the 59 genes on the ACMG list of secondary findings were investigated. Pathogenicity classifications were assigned to those variants based on the ACMG scoring system. We identified 2409 variants in the 59 gene list, 45 variants were classified as pathogenic/likely pathogenic variants according to the ACMG classification. The LDLR gene had the greatest number of pathogenic/likely pathogenic variants 12%. Cardiovascular genetic diseases had the highest frequency of disorders detected as secondary findings. In this study, the overall rate of positive cases identified with secondary findings in the Saudi population was 8%. The different in our current study and the previous studies in Saudi Arabia can be explained by the differences between the sequencing method, the criteria used for variant classification, the availability of newer evidence at the time of the publication, and the fact that we identified Saudi novel variants never reported in other populations.


Assuntos
Variação Genética , Genômica , Exoma/genética , Testes Genéticos , Humanos , Arábia Saudita/epidemiologia , Sequenciamento do Exoma
4.
Hum Genet ; 140(4): 579-592, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33048237

RESUMO

We aimed to detect the causative gene in five unrelated families with recessive inheritance pattern neurological disorders involving the central nervous system, and the potential function of the NEMF gene in the central nervous system. Exome sequencing (ES) was applied to all families and linkage analysis was performed on family 1. A minigene assay was used to validate the splicing effect of the relevant discovered variants. Immunofluorescence (IF) experiment was performed to investigate the role of the causative gene in neuron development. The large consanguineous family confirms the phenotype-causative relationship with homozygous frameshift variant (NM_004713.6:c.2618del) as revealed by ES. Linkage analysis of the family showed a significant single-point LOD of 4.5 locus. Through collaboration in GeneMatcher, four additional unrelated families' likely pathogenic NEMF variants for a spectrum of central neurological disorders, two homozygous splice-site variants (NM_004713.6:c.574+1G>T and NM_004713.6:c.807-2A>C) and a homozygous frameshift variant (NM_004713.6: c.1234_1235insC) were subsequently identified and segregated with all affected individuals. We further revealed that knockdown (KD) of Nemf leads to impairment of axonal outgrowth and synapse development in cultured mouse primary cortical neurons. Our study demonstrates that disease-causing biallelic NEMF variants result in central nervous system impairment and other variable features. NEMF is an important player in mammalian neuron development.


Assuntos
Antígenos de Neoplasias/genética , Axônios , Doenças do Sistema Nervoso Central/genética , Mutação com Perda de Função , Proteínas de Transporte Nucleocitoplasmático/genética , Polineuropatias/genética , Adolescente , Adulto , Alelos , Animais , Encéfalo/metabolismo , Células Cultivadas , Consanguinidade , Feminino , Perfilação da Expressão Gênica , Genes Recessivos , Homozigoto , Humanos , Masculino , Camundongos Endogâmicos C57BL , Linhagem , RNA-Seq , Sequenciamento do Exoma , Adulto Jovem
5.
Genet Med ; 23(8): 1551-1568, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33875846

RESUMO

PURPOSE: Within this study, we aimed to discover novel gene-disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS). METHODS: We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene-disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients. RESULTS: We propose six novel gene-disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral-facial-digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia. CONCLUSION: Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene-disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.


Assuntos
Exoma , Deficiência Intelectual , Sequência de Bases , Exoma/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso , Fenótipo , Sequenciamento do Exoma
6.
Am J Med Genet A ; 185(8): 2455-2463, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33963797

RESUMO

Pycnodysostosis is characterized by short stature, osteosclerosis, acro-osteolysis, increased tendency of fractures, and distinctive dysmorphic features. It is a rare autosomal recessive disease caused by biallelic CTSK mutations. The clinical details of 18 patients from Saudi Arabia were reviewed. Short stature, osteopetrosis, acro-osteolysis, and distinctive facial dysmorphism were documented in all cases. Our results highlight the significant complications associated with this disease. The large anterior fontanelle is one of the cardinal signs of this disease; however, half of our patients had small fontanelles and a quarter had craniosynostosis, which caused optic nerve compression. Sleep apnea was of the major complications in three patients. Bone fracture can be a presenting symptom, and in our patients it mainly occurred after the age of 3 years. Bone marrow suppression was seen in a single patient of our cohort who was misdiagnosed initially with malignant osteopetrosis. In this study, we also describe two novel (c.5G > A [p.Trp2Ter], c.538G > A [p.Gly180Ser]) and two reported (c.244-29 A > G, c.830C > T [p.Ala277Val]) CTSK mutations. Our results indicate that the recurrent intronic variant, c.244-29 A > G is likely to be a founder mutation, as it was found in 78% (14/18 patients) of our cohort belonging to the same tribe.


Assuntos
Alelos , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Fenótipo , Picnodisostose/diagnóstico , Picnodisostose/genética , Catepsina K/genética , Pré-Escolar , Consanguinidade , Fácies , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Imageamento Tridimensional , Masculino , Mutação , Linhagem , Radiografia , Arábia Saudita , Tomografia Computadorizada por Raios X
7.
Clin Genet ; 95(2): 310-319, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30561787

RESUMO

Defects in the peroxisomes biogenesis and/or function result in peroxisomal disorders. In this study, we describe the largest Arab cohort to date (72 families) of clinically, biochemically and molecularly characterized patients with peroxisomal disorders. At the molecular level, we identified 43 disease-causing variants, half of which are novel. The founder nature of many of the variants allowed us to calculate the minimum disease burden for these disorders in our population ~1:30 000, which is much higher than previous estimates in other populations. Clinically, we found an interesting trend toward genotype/phenotype correlation in terms of long-term survival. Nearly half (40/75) of our peroxisomal disorders patients had documented survival beyond 1 year of age. Most unusual among the long-term survivors was a multiplex family in which the affected members presented as adults with non-specific intellectual disability and epilepsy. Other unusual presentations included the very recently described peroxisomal fatty acyl-CoA reductase 1 disorder as well as CRD, spastic paraparesis, white matter (CRSPW) syndrome. We conclude that peroxisomal disorders are highly heterogeneous in their clinical presentation. Our data also confirm the demonstration that milder forms of Zellweger spectrum disorders cannot be ruled out by the "gold standard" very long chain fatty acids assay, which highlights the value of a genomics-first approach in these cases.


Assuntos
Árabes , Transtornos Peroxissômicos/epidemiologia , Transtornos Peroxissômicos/etiologia , Árabes/genética , Biomarcadores , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Consanguinidade , Efeitos Psicossociais da Doença , Gerenciamento Clínico , Suscetibilidade a Doenças , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação , Linhagem , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/terapia , Fenótipo , Vigilância da População , Prognóstico
8.
BMC Pediatr ; 19(1): 195, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196016

RESUMO

INTRODUCTION: Propionic acidemia (PA) and methylmalonic acidemia (MMA) are rare autosomal recessive inborn errors of metabolism characterized by hyperammonemia due to N-acetylglutamate synthase (NAGS) dysfunction. Carglumic acid (Carbaglu®; Orphan Europe Ltd.) is approved by the US Food and Drug Administration (USFDA) for the treatment of hyperammonemia due hepatic NAGS deficiency. Here we report the rationale and design of a phase IIIb trial that is aimed at determining the long-term efficacy and safety of carglumic acid in the management of PA and MMA. METHODS: This prospective, multicenter, open-label, randomized, parallel group phase IIIb study will be conducted in Saudi Arabia. Patients with PA or MMA (≤15 years of age) will be randomized 1:1 to receive twice daily carglumic acid (50 mg/kg/day) plus standard therapy (protein-restricted diet, L-carnitine, and metronidazole) or standard therapy alone for a 2-year treatment period. The primary efficacy outcome is the number of emergency room visits due to hyperammonemia. Safety will be assessed throughout the study and during the 1 month follow-up period after the study. DISCUSSION: Current guidelines recommend conservative medical treatment as the main strategy for the management of PA and MMA. Although retrospective studies have suggested that long-term carglumic acid may be beneficial in the management of PA and MMA, current literature lacks evidence for this indication. This clinical trial will determine the long-term safety and efficacy of carglumic acid in the management of PA and MMA. TRIAL REGISTRATION: King Abdullah International Medical Research Center ( KAIMRC ): (RC13/116) 09/1/2014. Saudi Food and Drug Authority (SFDA) (33066) 08/14/2014. ClinicalTrials.gov (identifier: NCT02426775) 04/22/2015.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Ensaios Clínicos Fase III como Assunto , Glutamatos/uso terapêutico , Acidemia Propiônica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Adolescente , Carnitina/uso terapêutico , Criança , Dieta com Restrição de Proteínas , Esquema de Medicação , Término Precoce de Ensaios Clínicos , Glutamatos/efeitos adversos , Humanos , Metronidazol/uso terapêutico , Estudos Multicêntricos como Assunto , Acidemia Propiônica/terapia , Estudos Prospectivos , Tamanho da Amostra , Arábia Saudita
9.
Genet Med ; 20(11): 1328-1333, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29565419

RESUMO

PURPOSE: Whole-exome sequencing (WES) and whole-genome sequencing (WGS) are used to diagnose genetic and inherited disorders. However, few studies comparing the detection rates of WES and WGS in clinical settings have been performed. METHODS: Variant call format files were generated and raw data analysis was performed in cases in which the final molecular results showed discrepancies. We classified the possible explanations for the discrepancies into three categories: the time interval between the two tests, the technical limitations of WES, and the impact of the sequencing system type. RESULTS: This cohort comprised 108 patients with negative array comparative genomic hybridization and negative or inconclusive WES results before WGS was performed. Ten (9%) patients had positive WGS results. However, after reanalysis the WGS hit rate decreased to 7% (7 cases). In four cases the variants were identified by WES but missed for different reasons. Only 3 cases (3%) were positive by WGS but completely unidentified by WES. CONCLUSION: In this study, we showed that 30% of the positive cases identified by WGS could be identified by reanalyzing the WES raw data, and WGS achieved an only 7% higher detection rate. Therefore, until the cost of WGS approximates that of WES, reanalyzing WES raw data is recommended before performing WGS.


Assuntos
Hibridização Genômica Comparativa/métodos , Sequenciamento do Exoma/métodos , Doenças Genéticas Inatas/diagnóstico , Sequenciamento Completo do Genoma/métodos , Adulto , Criança , Pré-Escolar , Exoma/genética , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Genoma Humano/genética , Humanos , Masculino
10.
Genet Med ; 20(5): 536-544, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29048421

RESUMO

PurposeHearing loss is more prevalent in the Saudi Arabian population than in other populations; however, the full range of genetic etiologies in this population is unknown. We report the genetic findings from 33 Saudi hearing-loss probands of tribal ancestry, with predominantly prelingual severe to profound hearing loss.MethodsTesting was performed over the course of 2012-2016, and involved initial GJB2 sequence and GJB6-D13S1830 deletion screening, with negative cases being reflexed to a next-generation sequencing panel with 70, 71, or 87 hearing-loss genes.ResultsA "positive" result was reached in 63% of probands, with two recurrent OTOF variants (p.Glu57* and p.Arg1792His) accountable for a third of all "positive" cases. The next most common cause was pathogenic variants in MYO7A and SLC26A4, each responsible for three "positive" cases. Interestingly, only one "positive" diagnosis had a DFNB1-related cause, due to a homozygous GJB6-D13S1830 deletion, and no sequence variants in GJB2 were detected.ConclusionOur findings implicate OTOF as a potential major contributor to hearing loss in the Saudi population, while highlighting the low contribution of GJB2, thus offering important considerations for clinical testing strategies for Saudi patients. Further screening of Saudi patients is needed to characterize the genetic spectrum in this population.


Assuntos
Surdez/epidemiologia , Surdez/genética , Variação Genética , Proteínas de Membrana/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Criança , Pré-Escolar , Estudos de Coortes , Conexina 26 , Conexinas/genética , Surdez/diagnóstico , Testes Genéticos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Linhagem , Fenótipo , Vigilância da População , Arábia Saudita/epidemiologia , Adulto Jovem
11.
Genet Med ; 20(10): 1175-1185, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29469822

RESUMO

PURPOSE: To characterize the molecular genetics of autosomal recessive Noonan syndrome. METHODS: Families underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis. Exome, genome, or multigene panel sequencing was used to identify variants. The molecular consequences of observed splice variants were evaluated by reverse-transcription polymerase chain reaction. RESULTS: Twelve families with a total of 23 affected children with features of Noonan syndrome were evaluated. The phenotypic range included mildly affected patients, but it was lethal in some, with cardiac disease and leukemia. All of the parents were unaffected. Linkage analysis using a recessive model supported a candidate region in chromosome 22q11, which includes LZTR1, previously shown to harbor mutations in patients with Noonan syndrome inherited in a dominant pattern. Sequencing analyses of 21 live-born patients and a stillbirth identified biallelic pathogenic variants in LZTR1, including putative loss-of-function, missense, and canonical and noncanonical splicing variants in the affected children, with heterozygous, clinically unaffected parents and heterozygous or normal genotypes in unaffected siblings. CONCLUSION: These clinical and genetic data confirm the existence of a form of Noonan syndrome that is inherited in an autosomal recessive pattern and identify biallelic mutations in LZTR1.


Assuntos
Predisposição Genética para Doença , Síndrome de Noonan/genética , Fatores de Transcrição/genética , Adolescente , Criança , Pré-Escolar , Exoma/genética , Feminino , Ligação Genética , Genótipo , Heterozigoto , Humanos , Lactente , Masculino , Mutação , Síndrome de Noonan/patologia , Linhagem , Isoformas de Proteínas/genética , Splicing de RNA/genética , Irmãos
12.
Hum Genet ; 136(4): 377-386, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28251352

RESUMO

Impairment of ubiquitin-proteasome system activity involving ubiquitin ligase genes UBE3A, UBE3B, and HUWE1 and deubiquitinating enzyme genes USP7 and USP9X has been reported in patients with neurodevelopmental delays. To date, only a handful of single-nucleotide variants (SNVs) and copy-number variants (CNVs) involving TRIP12, encoding a member of the HECT domain E3 ubiquitin ligases family on chromosome 2q36.3 have been reported. Using chromosomal microarray analysis and whole-exome sequencing (WES), we have identified, respectively, five deletion CNVs and four inactivating SNVs (two frameshifts, one missense, and one splicing) in TRIP12. Seven of these variants were found to be de novo; parental studies could not be completed in two families. Quantitative PCR analyses of the splicing mutation showed a dramatically decreased level of TRIP12 mRNA in the proband compared to the family controls, indicating a loss-of-function mechanism. The shared clinical features include intellectual disability with or without autistic spectrum disorders, speech delay, and facial dysmorphism. Our findings demonstrate that E3 ubiquitin ligase TRIP12 plays an important role in nervous system development and function. The nine presented pathogenic variants further document that TRIP12 haploinsufficiency causes a childhood-onset neurodevelopmental disorder. Finally, our data enable expansion of the phenotypic spectrum of ubiquitin-proteasome dependent disorders.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Transporte/genética , Fácies , Haploinsuficiência , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Transtorno do Espectro Autista/complicações , Criança , Pré-Escolar , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Humanos , Lactente , Deficiência Intelectual/complicações , Transtornos do Desenvolvimento da Linguagem/complicações , Masculino
13.
Am J Hum Genet ; 94(1): 62-72, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24360808

RESUMO

Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain ∼5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.


Assuntos
Proteínas de Ciclo Celular/genética , Doenças Cerebelares/genética , Cílios/genética , Síndrome de Ellis-Van Creveld/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação , Retina/anormalidades , Anormalidades Múltiplas , Adolescente , Animais , Cerebelo/anormalidades , Criança , Pré-Escolar , Cílios/patologia , Éxons , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Lactente , Masculino , Fenótipo , Análise de Sequência de DNA , Adulto Jovem , Peixe-Zebra/genética
14.
Am J Hum Genet ; 86(3): 389-98, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20188343

RESUMO

Osteogenesis imperfecta (OI) is characterized by bone fragility and fractures that may be accompanied by bone deformity, dentinogenesis imperfecta, short stature, and shortened life span. About 90% of individuals with OI have dominant mutations in the type I collagen genes COL1A1 and COL1A2. Recessive forms of OI resulting from mutations in collagen-modifying enzymes and chaperones CRTAP, LEPRE1, PPIB, and FKBP10 have recently been identified. We have identified an autosomal-recessive missense mutation (c.233T>C, p.Leu78Pro) in SERPINH1, which encodes the collagen chaperone-like protein HSP47, that leads to a severe OI phenotype. The mutation results in degradation of the endoplasmic reticulum resident HSP47 via the proteasome. Type I procollagen accumulates in the Golgi of fibroblasts from the affected individual and a population of the secreted type I procollagen is protease sensitive. These findings suggest that HSP47 monitors the integrity of the triple helix of type I procollagen at the ER/cis-Golgi boundary and, when absent, the rate of transit from the ER to the Golgi is increased and helical structure is compromised. The normal 3-hydroxylation of the prolyl residue at position 986 of the triple helical domain of proalpha1(I) chains places the role of HSP47 downstream from the CRTAP/P3H1/CyPB complex that is involved in prolyl 3-hydroxylation. Identification of this mutation in SERPINH1 gives further insight into critical steps of the collagen biosynthetic pathway and the molecular pathogenesis of OI.


Assuntos
Proteínas de Choque Térmico HSP47/genética , Mutação de Sentido Incorreto , Osteogênese Imperfeita/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Pré-Escolar , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Consanguinidade , Sequência Conservada , DNA/genética , Retículo Endoplasmático/metabolismo , Evolução Fatal , Feminino , Genes Recessivos , Proteínas de Choque Térmico HSP47/metabolismo , Homozigoto , Humanos , Masculino , Dados de Sequência Molecular , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/metabolismo , Linhagem , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Radiografia , Homologia de Sequência de Aminoácidos
15.
Am J Med Genet A ; 161A(12): 3155-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24039075

RESUMO

Raine syndrome is an autosomal recessive disorder caused by mutations in the FAM20C gene that is characterized by generalized osteosclerosis with periosteal new bone formation and distinctive craniofacial dysmorphism. We report on a child who is homozygous for a 487-kb deletion in 7p22.3 that contains FAM20C. Both parents were heterozygous for the deletion. Our patient had the common craniofacial features as well as, uncommon features such as protruding tongue, short stature, and hypoplastic distal phalanges. In addition, he had wormian bones and pyriform aperture stenosis, features that are usually under diagnosed. It is clear that Raine syndrome has a wide range of expression and may not be lethal in the neonatal period. Furthermore, Raine cases due to whole gene deletion do not seem to have a major difference in the phenotype over those caused by various mutations.


Assuntos
Anormalidades Múltiplas/genética , Fissura Palatina/genética , Exoftalmia/genética , Proteínas da Matriz Extracelular/genética , Microcefalia/genética , Osteosclerose/genética , Anormalidades Múltiplas/etiologia , Anormalidades Múltiplas/mortalidade , Anormalidades Múltiplas/fisiopatologia , Doenças do Desenvolvimento Ósseo/genética , Caseína Quinase I , Fissura Palatina/etiologia , Fissura Palatina/mortalidade , Fissura Palatina/fisiopatologia , Exoftalmia/etiologia , Exoftalmia/mortalidade , Exoftalmia/fisiopatologia , Deleção de Genes , Humanos , Recém-Nascido , Masculino , Microcefalia/etiologia , Microcefalia/mortalidade , Microcefalia/fisiopatologia , Mutação , Osteosclerose/complicações , Osteosclerose/etiologia , Osteosclerose/mortalidade , Osteosclerose/fisiopatologia
16.
Am J Med Genet A ; 161A(9): 2244-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23897666

RESUMO

Spondylocostal dysotosis (SCD) is a rare developmental congenital abnormality of the axial skeleton. Mutation of genes in the Notch signaling pathway cause SCD types 1-5. Dextrocardia with situs inversus is a rare congenital malformation in which the thoracic and abdominal organs are mirror images of normal. Such laterality defects are associated with gene mutations in the Nodal signaling pathway or cilia assembly or function. We investigated two distantly related individuals with a rare combination of severe segmental defects of the vertebrae (SDV) and dextrocardia with situs inversus. We found that both individuals were homozygous for the same mutation in HES7, and that this mutation caused a significant reduction of HES7 protein function; HES7 mutation causes SCD4. Two other individuals with SDV from two unrelated families were found to be homozygous for the same mutation. Interestingly, although the penetrance of the vertebral defects was complete, only 3/7 had dextrocardia with situs inversus, suggesting randomization of left-right patterning. Two of the affected individuals presented with neural tube malformations including myelomeningocele, spina bifida occulta and/or Chiari II malformation. Such neural tube phenotypes are shared with the originally identified SCD4 patient, but have not been reported in the other forms of SCD. In conclusion, it appears that mutation of HES7 is uniquely associated with defects in vertebral, heart and neural tube formation, and this observation will help provide a discriminatory diagnostic guide in patients with SCD, as well as inform molecular genetic testing.


Assuntos
Anormalidades Múltiplas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Dextrocardia/genética , Cardiopatias Congênitas/genética , Hérnia Diafragmática/genética , Mutação , Situs Inversus/genética , Anormalidades Múltiplas/diagnóstico , Substituição de Aminoácidos , Animais , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Consanguinidade , Dextrocardia/diagnóstico , Feminino , Genótipo , Cardiopatias Congênitas/diagnóstico , Hérnia Diafragmática/diagnóstico , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Linhagem , Fenótipo , Situs Inversus/diagnóstico
17.
J Med Genet ; 49(2): 126-37, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22241855

RESUMO

BACKGROUND: Joubert syndrome (JS) is a ciliopathy characterised by a distinctive brain malformation (the 'molar tooth sign'), developmental delay, abnormal eye movements and abnormal breathing pattern. Retinal dystrophy, cystic kidney disease, liver fibrosis and polydactyly are variably present, resulting in significant phenotypic heterogeneity and overlap with other ciliopathies. JS is also genetically heterogeneous, resulting from mutations in 13 genes. These factors render clinical/molecular diagnosis and management challenging. CC2D2A mutations are a relatively common cause of JS and also cause Meckel syndrome. The clinical consequences of CC2D2A mutations in patients with JS have been incompletely reported. METHODS: Subjects with JS from 209 families were evaluated to identify mutations in CC2D2A. Clinical and imaging features in subjects with CC2D2A mutations were compared with those in subjects without CC2D2A mutations and reports in the literature. RESULTS: 10 novel CC2D2A mutations in 20 subjects were identified; a summary is provided of all published CC2D2A mutations. Subjects with CC2D2A-related JS were more likely to have ventriculomegaly (p<0.0001) and seizures (p=0.024) than subjects without CC2D2A mutations. No mutation-specific genotype-phenotype correlations could be identified, but the findings confirm the observation that mutations that cause CC2D2A-related JS are predicted to be less deleterious than mutations that cause CC2D2A-related Meckel syndrome. Missense variants in the coiled-coil and C2 domains, as well as the C-terminal region, identify these regions as important for the biological mechanisms underlying JS. CONCLUSIONS: CC2D2A testing should be prioritised in patients with JS and ventriculomegaly and/or seizures. Patients with CC2D2A-related JS should be monitored for hydrocephalus and seizures.


Assuntos
Doenças Cerebelares/genética , Anormalidades do Olho/genética , Estudos de Associação Genética , Hidrocefalia/genética , Doenças Renais Císticas/genética , Proteínas/genética , Convulsões/genética , Anormalidades Múltiplas , Adolescente , Adulto , Alelos , Doenças Cerebelares/diagnóstico , Doenças Cerebelares/epidemiologia , Cerebelo/anormalidades , Criança , Pré-Escolar , Proteínas do Citoesqueleto , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/epidemiologia , Genótipo , Humanos , Hidrocefalia/diagnóstico , Lactente , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/epidemiologia , Imageamento por Ressonância Magnética , Neuroimagem , Fenótipo , Prevalência , Retina/anormalidades , Adulto Jovem
19.
Genet Med ; 14(12): 955-62, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22935719

RESUMO

BACKGROUND: Pediatric cataract is an important preventable blinding disease. Previous studies have estimated 10-25% of cases to be genetic in etiology. METHODS: In an effort to characterize the genetics of cataract in our population, we have conducted a comprehensive clinical and genomic analysis (including autozygome and exome analysis) on a series of 38 index patients. RESULTS: Pediatric cataract is genetic in at least 79% of the study families. Although crystallins accounted for most of the mutant alleles, mutations in other genes were encountered, including recessive mutations in genes that usually cause the disease in a dominant manner. In addition, several novel candidate genes (MFSD6L, AKR1E2, RNLS, and CYP51A1) were identified. CONCLUSION: Pediatric cataract is typically a genetic disease, usually autosomal recessive, in Saudi Arabia. Although defining a specific cataract phenotype can sometimes predict the genetic cause, genomic analysis is often required to unravel the causative mutation given the marked genetic heterogeneity. The identified novel candidate genes require independent confirmation in future studies.


Assuntos
Catarata/genética , Criança , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Exoma , Proteínas do Olho/genética , Feminino , Efeito Fundador , Estudos de Associação Genética , Genoma Humano , Homozigoto , Humanos , Proteínas de Filamentos Intermediários/genética , Masculino , Proteínas Associadas aos Microtúbulos , Monoaminoxidase/genética , Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/genética , Receptor EphA2/genética , Arábia Saudita , Esterol 14-Desmetilase/genética , Fatores de Transcrição/genética , Cadeia B de beta-Cristalina/genética
20.
Comput Biol Med ; 145: 105492, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585733

RESUMO

PURPOSE: Medical artificial intelligence (MAI) is artificial intelligence (AI) applied to the healthcare field. AI can be applied to many different aspects of genetics, such as variant classification. With little or no prior experience in AI coding, we share our experience with variant classification using the Variant Artificial Intelligence Easy Scoring (VARIES), an open-access platform, and the Automatic Machine Learning (AutoML) of the Google Cloud Platform. METHODS: We investigated exome sequencing data from a sample of 1410 individuals. The majority (80%) were used for training and 20% for testing. The user-friendly Google Cloud Platform was used to create the VARIES model, and the TRIPOD checklist to develop and validate the prediction model for the development of the VARIES system. RESULTS: The learning rate of the training dataset reached optimal results at an early stage of iteration, with a loss value near zero in approximately 4 min. For the testing dataset, the results for F1 (micro average) was 0.64, F1 (macro average) 0.34, micro-average area under the curve AUC (one-over-rest) 0.81 and the macro-average AUC (one-over-rest) 0.73. The overall performance characteristics of the VARIES model suggest the classifier has a high predictive ability. CONCLUSION: We present a systematic guideline to create a genomic AI prediction tool with high predictive power, using a graphical user interface provided by Google Cloud Platform, with no prior experience in creating the software programs required.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA