Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Res Natl Inst Stand Technol ; 110(4): 357-60, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-27308150

RESUMO

Finite-element methods along with Monte Carlo simulations were used to design a magnetic storage device for ultracold neutrons (UCN) to measure their lifetime. A setup was determined which should make it possible to confine UCN with negligible losses and detect the protons emerging from ß-decay with high efficiency: stacked superconducting solenoids create the magnetic storage field, an electrostatic extraction field inside the storage volume assures high proton collection efficiency. Alongside with the optimization of the magnetic and electrostatic design, the properties of the trap were investigated through extensive Monte Carlo simulation.

2.
Rev Sci Instrum ; 85(7): 075106, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25085172

RESUMO

A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.

3.
Phys Rev Lett ; 103(8): 081602, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19792714

RESUMO

A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and 199Hg atoms, is reported. No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field b perpendicular < 2 x 10(-20) eV (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron |gn| < 0.3 eV/c2 m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit |gn| < 3 x 10(-4) eV/c2 m.

4.
Phys Rev Lett ; 100(1): 014801, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-18232776

RESUMO

We have measured the acceleration of neutrons by the material optical potential of solid 2H2. Using a gravitational spectrometer, we find a minimal kinetic energy Ec = (99+/-7) neV of neutrons from a superthermal ultracold neutron (UCN) source with solid 2H2 as an UCN converter. The result is in excellent agreement with theoretical predictions, Ec = 106 neV.

5.
Phys Rev Lett ; 94(8): 082001, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15783877

RESUMO

We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A( perpendicular), at two Q2 values of 0.106 and 0.230 (GeV/c)(2) and a scattering angle of 30 degrees

6.
Phys Rev Lett ; 94(15): 152001, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15904134

RESUMO

We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of Q(2)=0.108 (GeV/c)(2) and at a forward electron scattering angle of 30 degrees p)=[-1.36+/-0.29(stat)+/-0.13(syst)]x10(-6). The expectation from the standard model assuming no strangeness contribution to the vector current is A(0)=(-2.06+/-0.14)x10(-6). We have improved the statistical accuracy by a factor of 3 as compared to our previous measurements at a higher Q2. We have extracted the strangeness contribution to the electromagnetic form factors from our data to be G(s)(E)+0.106G(s)(M)=0.071+/-0.036 at Q(2)=0.108 (GeV/c)(2). We again find the value for G(s)(E)+0.106G(s)(M) to be positive, this time at an improved significance level of two sigma.

7.
Phys Rev Lett ; 93(2): 022002, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15323904

RESUMO

We report on a measurement of the parity-violating asymmetry in the scattering of longitudinally polarized electrons on unpolarized protons at a Q2 of 0.230 (GeV/c)(2) and a scattering angle of theta (e) = 30 degrees - 40 degrees. Using a large acceptance fast PbF2 calorimeter with a solid angle of delta omega = 0.62 sr, the A4 experiment is the first parity violation experiment to count individual scattering events. The measured asymmetry is A(phys)=(-5.44+/-0.54(stat)+/-0.26(sys))x10(-6). The standard model expectation assuming no strangeness contributions to the vector form factors is A(0) = (-6.30+/-0.43) x 10(-6). The difference is a direct measurement of the strangeness contribution to the vector form factors of the proton. The extracted value is G(s)(E) + 0.225G(s)(M) = 0.039+/-0.034 or F(s)(1) + 0.130F(s)(2) = 0.032+/-0.028.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA