Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 915: 170155, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38228241

RESUMO

Plastic pollution in the Southern Ocean around Antarctica is a growing concern, but many areas in this vast region remain unexplored. This study provides the first comprehensive analysis of marine microplastic (MPs) concentrations in Potter Cove, located near the Argentinian Carlini research station on 25 de Mayo/King George Island, Antarctica. Water samples were collected at 14 sites within the cove, representing various influences from the station's activities. Two sampling methods were used: a 5 L Niskin bottle and an in-situ filtering device called Microfilter, allowing for large water volumes to be filtered. MPs were found in 100 % of the samples. Microfilter samples ranged from 0.02 to 2.14 MPs/L, with a mean concentration of 0.44 ± 0.44 MPs/L. Niskin bottle samples showed concentrations from 0.40 to 55.67 MPs/L, with a mean concentration of 19.03 ± 18.21 MPs/L. The dominant types of MPs were anthropogenic black, transparent, and pink microfibers (MFs) measuring between 0.11 and 3.6 mm (Microfilter) and 0.06 to 7.96 mm (Niskin bottle), with a median length of 0.01 mm for both methods. Transparent and black irregular microfragments (MFRs) with diameters from 0.10 to 5.08 mm and a median diameter of 0.49 mm were also prevalent. FTIR-spectroscopy revealed the presence of 14 types of polymers. Cellulose-based materials and polyethylene terephthalate were the most abundant in MFs, while polyurethanes and styrene-based copolymers dominated in MFRs. MPs were more abundant near the Carlini station. Compared to other coastal Antarctic areas, the MPs in the cove were relatively abundant and mostly smaller than 1 mm. Local activities on the island were identified as the primary source of MPs in the cove, and the cyclonic water circulation likely affects the distribution of small-sized particles. To protect the ecosystem, reducing plastic usage, improving waste management, regulating MPs debris, and enhancing wastewater practices are essential.

2.
Sci Total Environ ; 903: 166577, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633374

RESUMO

Southern Ocean organisms are considered particularly vulnerable to Ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. It is also generally assumed that OA would affect calcifying animals more than non-calcifying animals. In this context, we aimed to study the impact of reduced pH on both types of species: the ascidian Cnemidocarpa verrucosa sp. A, and the bivalve Aequiyoldia eightsii, from an Antarctic fjord. We used gene expression profiling and enzyme activity to study the responses of these two Antarctic benthic species to OA. We report the results of an experiment lasting 66 days, comparing the molecular mechanisms underlying responses under two pCO2 treatments (ambient and elevated pCO2). We observed 224 up-regulated and 111 down-regulated genes (FC ≥ 2; p-value ≤ 0.05) in the ascidian. In particular, the decrease in pH caused an upregulation of genes involved in the immune system and antioxidant response. While fewer differentially expressed (DE) genes were observed in the infaunal bivalve, 34 genes were up-regulated, and 69 genes were downregulated (FC ≥ 2; p-value ≤ 0.05) in response to OA. We found downregulated genes involved in the oxidoreductase pathway (such as glucose dehydrogenase and trimethyl lysine dioxygenase), while the heat shock protein 70 was up-regulated. This work addresses the effect of OA in two common, widely distributed Antarctic species, showing striking results. Our major finding highlights the impact of OA on the non-calcifying species, a result that differ from the general trend, which describes a higher impact on calcifying species. This calls for discussion of potential effects on non-calcifying species, such as ascidians, a diverse and abundant group that form extended three-dimensional clusters in shallow waters and shelf areas in the Southern Ocean.

3.
Mar Environ Res ; 167: 105284, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33730611

RESUMO

Glacier melting sediment inputs affect coastal ecosystems on the Antarctic Peninsula. In Potter Cove (South Shetland Islands, Antarctica), the shift from an "ascidian dominated" to a "mixed" assemblage has been linked to sedimentation. However, in recently described newly ice-free areas ascidians became dominant in spite of total suspended particulate matter (TSPM) concentrations, which are the highest measured in Potter Cove. Here, we compared the gut content and energy reserve of three ascidian species at three stations under different TSPM regimes. All analysed species had a higher gut content with lower %OM at these newly areas. A theoretical relationship between the scope for growth for the targeted ascidians and TSPM explained assemblages' recorded change but failed to explain current ascidians distribution. The results may indicate the existence of a TSPM threshold that allows the spatial coexistence of alternative stable states at benthic Potter Cove system.


Assuntos
Ecossistema , Urocordados , Animais , Regiões Antárticas , Camada de Gelo
4.
Mar Environ Res ; 130: 264-274, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28844394

RESUMO

Antarctic ecosystems present highly marked seasonal patterns in energy input, which in turn determines the biology and ecology of marine invertebrate species. This relationship is stronger at lower levels of the food web, while upper levels may be less dependent on primary production pulses. The pennatulid Malacobelemnon daytoni, is one of the most abundant species in Potter Cove, Antarctica. In order to assess its trophic ecology and energetic strategies, its biochemical (carbohydrates, proteins and lipids), Fatty Acid (FA) and Stable Isotope (SI) (δ15N and δ13C) compositions were studied over a year-round period. The FA and SI profiles suggest an omnivorous diet and opportunistic feeding strategy for the species. These results, together with biochemical analysis (higher lipid and carbohydrate concentration observed in July and October 2009), support the hypothesis that resuspension events may be an important source of energy, reducing the seasonality of food depletion periods in winter. The evidence presented here gives us a better insight into the success that this species has in Potter Cove and under the current environmental changes experienced by the Antarctic Peninsula.


Assuntos
Antozoários , Ecologia , Cadeia Alimentar , Animais , Regiões Antárticas , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA