Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Langmuir ; 37(40): 11900-11908, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34585578

RESUMO

Hopanoids are proposed as sterol surrogates in some bacteria, and it has been proved that some hopanoids are able to induce a liquid-order phase state in lipid membranes. The members of this group of molecules have diverse structures, and not all of them have been studied in detail yet. Here, we study membranes with the hopanoid hopene (hop-22 (29)-ene or diploptene), which is the product of the cycling of squalene by squalene-hopene cyclase, and thus is present in the first step of hopanoid biosynthesis. Hopene is particularly interesting because it lacks a polar head group, which opens the question of how does this molecule accommodate in a lipid membrane, and what are the effects promoted by its presence. In order to get an insight into this, we prepared monolayers and bilayers of a phospholipid with hopene and studied their properties in comparison with pure phospholipid membranes, and with the sterol cholesterol or the hopanoid diplopterol. Film stiffness, shear viscosity, and bending dynamics were very affected by the presence of hopene, while zeta-potential, generalized polarization of Laurdan, and conductivity were affected moderately by this molecule. The results suggest that at very low percentages, hopene locates parallel to the phospholipid molecules, while the excess of the hopene molecules stays between leaflets, as previously proposed using molecular dynamics simulations.


Assuntos
Triterpenos , Bactérias , Membranas , Esqualeno , Esteróis
2.
Biochim Biophys Acta Biomembr ; 1860(3): 737-748, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29287697

RESUMO

L1A (IDGLKAIWKKVADLLKNT-NH2) is a peptide that displays a selective antibacterial activity to Gram-negative bacteria without being hemolytic. Its lytic activity in anionic lipid vesicles was strongly enhanced when its N-terminus was acetylated (ac-L1A). This modification seems to favor the perturbation of the lipid core of the bilayer by the peptide, resulting in higher membrane lysis. In the present study, we used lipid monolayers and bilayers as membrane model systems to explore the impact of acetylation on the L1A lytic activity and its correlation with lipid-packing perturbation. The lytic activity investigated in giant unilamellar vesicles (GUVs) revealed that the acetylated peptide permeated the membrane at higher rates compared with L1A, and modified the membrane's mechanical properties, promoting shape changes. The peptide secondary structure and the changes in the environment of the tryptophan upon adsorption to large unilamellar vesicles (LUVs) were monitored by circular dichroism (CD) and red-edge excitation shift experiments (REES), respectively. These experiments showed that the N-terminus acetylation has an important effect on both, peptide secondary structure and peptide insertion into the bilayer. This was also confirmed by experiments of insertion into lipid monolayers. Compression isotherms for peptide/lipid mixed films revealed that ac-L1A dragged lipid molecules to the more disordered phase, generating a more favorable environment and preventing the lipid molecules from forming stiff films. Enthalpy changes in the main phase transition of the lipid membrane upon peptide insertion suggested that the acetylated peptide induced higher impact than the non-acetylated one on the thermotropic behavior of anionic vesicles.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos/química , Processamento de Proteína Pós-Traducional , Venenos de Vespas/química , Acetilação , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dicroísmo Circular , Peptídeos e Proteínas de Sinalização Intercelular , Bicamadas Lipídicas , Fluidez de Membrana , Lipídeos de Membrana/química , Proteínas de Membrana/química , Permeabilidade , Fosfolipídeos/química , Estrutura Secundária de Proteína/efeitos dos fármacos , Espectrometria de Fluorescência , Temperatura , Triptofano/química , Lipossomas Unilamelares
3.
Biochim Biophys Acta ; 1858(2): 393-402, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26673092

RESUMO

Polybia-MP1 (IDWKKLLDAAKQIL-NH2), extracted from the Brazilian wasp Polybia paulista, exhibits a broad-spectrum bactericidal activity without being hemolytic and cytotoxic. In the present study, we analyzed the surface properties of the peptide and its interaction with DPPC in Langmuir monolayers. Polybia-MP1 formed stable monolayers, with lateral areas and surface potential values suggesting a mostly α-helical structure oriented near perpendicular to the membrane plane. In DPPC-peptide mixed monolayers, MP1 co-crystallized with the lipid forming branched domains only when the subphase was pure water. On subphases with high salt concentrations or at acidic or basic conditions, the peptide formed less densely packed films and was excluded from the domains, indicating the presence of attractive electrostatic interactions between peptides, which allow them to get closer to each other and to interact with DPPC probably as a consequence of a particular peptide arrangement. The residues responsible of the peptide-peptide attraction are suggested to be the anionic aspartic acids and the cationic lysines, which form a salt bridge, leading to oriented interactions in the crystal and thereby to branched domains. For this peptide, the balance between total attractive and repulsive interactions may be finely tuned by the aqueous ionic strength and pH, and since this effect is related with lysines and aspartic acids, similar effects may also occur in other peptides containing these residues in their sequences.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Peptídeos Catiônicos Antimicrobianos/química , Membranas Artificiais , Venenos de Vespas/química , Estrutura Secundária de Proteína , Eletricidade Estática
4.
Biochim Biophys Acta Biomembr ; 1859(6): 1067-1074, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28274844

RESUMO

Polybia-MP1 (IDWKKLLDAAKQIL-NH2) is a lytic peptide from the Brazilian wasp venom with known anti-cancer properties. Previous evidence indicates that phosphatidylserine (PS) lipids are relevant for the lytic activity of MP1. In agreement with this requirement, phosphatidylserine lipids are translocated to the outer leaflet of cells, and are available for MP1 binding, depending on the presence of liquid-ordered domains. Here, we investigated the effect of PS on MP1 activity when this lipid is reconstituted in membranes of giant or large liposomes with different lipid-phase states. By monitoring the membrane and soluble luminal content of giant unilamellar vesicles (GUVs), using fluorescence confocal microscopy, we were able to determine that MP1 has a pore-forming activity at the membrane level. Liquid-ordered domains, which were phase-separated within the membrane of GUVs, influenced the pore-forming activity of MP1. Experiments evaluating the membrane-binding and lytic activity of MP1 on large unilamellar vesicles (LUVs), with the same lipid composition as GUVs, demonstrated that there was synergy between liquid-ordered domains and PS, which enhanced both activities. Based on our findings, we propose that the physicochemical properties of cancer cell membranes, which possess a much higher concentration of PS than normal cells, renders them susceptible to MP1 binding and lytic pore formation. These results can be correlated with MP1's potent and selective anti-cancer activity and pave the way for future research to develop cancer therapies that harness and exploit the properties of MP1.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Lipossomas Unilamelares/metabolismo , Venenos de Vespas/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Transporte Biológico , Linhagem Celular Tumoral , Membrana Celular/química , Colesterol/química , Colesterol/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Cinética , Lipídeos de Membrana/química , Especificidade de Órgãos , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/química , Porosidade , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lipossomas Unilamelares/química , Venenos de Vespas/química , Vespas
5.
Emerg Top Life Sci ; 7(1): 111-124, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36951374

RESUMO

Cell membranes are quasi-bidimensional soft systems formed by multipoles in an ordered array that can be polarized in an electric field. Consequently, electrostatic potentials emerge inside membranes, and membranes respond to external electric fields. From a mechanical perspective, membranes can be easily compressed-expanded, laterally deformed, and curved. Bending is particularly easy, and this kind of deformation translates to changes in the relative positions of the negative and positive charges, leading to strain gradient-induced polarization. Conversely, an external electric field gradient will exert a bending stress that translates to mechanical membrane deformation. These phenomena are described through membrane flexoelectricity. Here, we describe this property in lipid bilayers and cell membranes and summarize the studies in the field with emphasis on the effects promoted by membrane asymmetry.


Assuntos
Eletricidade , Bicamadas Lipídicas , Eletricidade Estática , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo
6.
Chem Phys Lipids ; 242: 105160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808124

RESUMO

Quercetin is a polyphenolic molecule with a broad spectrum of biological activities derived from its antioxidant property. Its mechanism of action has been explained by its binding and/or interference with enzymes, receptors, transporters and signal transduction systems. Since these important mechanisms generally occur in membrane environments, within and through lipid bilayers, investigating the biophysical properties related to the diversity of lipid compositions of cell membranes may be the key to understanding the role of cell membrane in these processes. In this work, we explored the interaction of quercetin with model membranes of different lipid compositions to access the importance of lipid phases and bilayer homogeneity to the action of quercetin and contribute to the understanding of quercetin multiple activities. Analysis of the influence of quercetin on the morphology and permeability of GUVs, the rigidity of LUVs and affinity to these vesicles showed that quercetin strongly partitions to the more homogeneous environments, but significantly permeates and modifies the more heterogeneous where liquid-disordered, liquid-ordered and solid phases coexist. Our findings support the condensing effect of quercetin, which is observed through a significant rigidifying of bilayers containing 40% cholesterol, but much less evidenced when it is reduced to 20% or in its absence. Nevertheless, the presence of sphingomyelin in the ternary system led to a more heterogeneous bilayer with the formation of micrometric and probably also nanometric domains, which coalesce in the presence of quercetin. This observation together with increased permeability points to an insertion effect.


Assuntos
Bicamadas Lipídicas , Quercetina , Membrana Celular , Permeabilidade , Quercetina/farmacologia , Esfingomielinas
7.
Langmuir ; 27(17): 10805-13, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21797216

RESUMO

Antimicrobial peptides of the mastoparans family exert their bactericidal activity by binding to lipid membranes, inducing pores or defects and leaking the internal contents of vesicles and cells. However, this does not seem to be the only mechanism at play, and they might be important in the search for improved peptides with lower undesirable side effects. This work deals with three mastoparans peptides, Polybia-MP-1(MP-1), N2-Polybia-MP-1 (N-MP-1), and Mastoparan X (MPX), which exhibit high sequence homology. They all have three lysine residues and amidated C termini, but because of the presence of two, one, and no aspartic acid residues, respectively, they have +2, +3, and +4 net charges at physiological pH. Here we focus on the effects of these mastoparans peptides on anionic model membranes made of palmitoleyoilphosphatidylcholine (POPC) and palmitoleyoilphosphatidylglycerol (POPG) at 1:1 and 3:1 molar ratios in the presence and in the absence of saline buffer. Zeta potential experiments were carried out to measure the extent of the peptides' binding and accumulation at the vesicle surface, and CD spectra were acquired to quantify the helical structuring of the peptides upon binding. Giant unilamellar vesicles were observed under phase contrast and fluorescence microscopy. We found that the three peptides induced the leakage of GUVs at a gradual rate with many characteristics of the graded mode. This process was faster in the absence of saline buffer. Additionally, we observed that the peptides induced the formation of dense regions of phospholipids and peptides on the GUV surface. This phenomenon was easily observable for the more charged peptides (MPX > N-MP-1 > MP-1) and in the absence of added salt. Our data suggest that these mastoparans accumulate on the bilayer surface and induce a transient interruption to its barrier properties, leaking the vesicle contents. Next, the bilayer recovers its continuity, but this happens in an inhomogeneous way, forming a kind of ply with peptides sandwiched between two juxtaposed membranes. Eventually, a peptide-lipid aggregate forming a lump is formed at high peptide-to-lipid ratios.


Assuntos
Peptídeos/metabolismo , Venenos de Vespas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos/síntese química , Peptídeos/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Cloreto de Sódio/química , Propriedades de Superfície , Venenos de Vespas/síntese química , Venenos de Vespas/química
8.
BBA Adv ; 1: 100002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37082019

RESUMO

Polybia-MP1 is an antimicrobial peptide that shows a decreased activity in membranes with cholesterol (CHO). Since it is now accepted that hopanoids act as sterol-surrogates in some sterol-lacking bacteria, we here inquire about the impact of Polybia-MP1 on membranes containing the hopanoid diplopterol (DP) in comparison to membranes with CHO. We found that, despite the properties induced on lipid membranes by DP are similar to those induced by CHO, the effect of Polybia-MP1 on membranes with CHO or DP was significantly different. DP did not prevent dye release from LUVs, nor the insertion of Polybia-MP1 into monolayers, and peptide-membrane affinity was higher for those with DP than with CHO. Zeta potentials ( ζ ) for DP-containing LUVs showed a complex behavior at increasing peptide concentration. The effect of the peptide on membrane elasticity, investigated by nanotube retraction experiments, showed that peptide addition softened all membrane compositions, but membranes with DP got stiffer at long times. Considering this, and the ζ results, we propose that peptides accumulate at the interface adopting different arrangements, leading to a non-monotonic behavior. Possible correlations with cell membranes were inquired testing the antimicrobial activity of Polybia-MP1 against hopanoid-lacking bacteria pre-incubated with DP or CHO. The fraction of surviving cells was lower in cultures incubated with DP compared to those incubated with CHO. We propose that the higher activity of Polybia-MP1 against some bacteria compared to mammalian cells is not only related to membrane electrostatics, but also the composition of neutral lipids, particularly the hopanoids, could be important.

9.
J Colloid Interface Sci ; 601: 517-530, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34090029

RESUMO

Despite the need for innovative compounds as antimicrobial and anticancer agents, natural sources of peptides remain underexplored. Protonectin (PTN), a cationic dodecapeptide of pharmacological interest, presents large hydrophobicity that is associated with the tendency to aggregate and supposedly influences bioactivity. A disaggregating role was assigned to PTN' N-terminal fragment (PTN1-6), which enhances the bioactivity of PTN in a 1:1 mixture (PTN/PTN1-6). Spectroscopic techniques and model membranes (phospholipid bilayers and SDS micelles) revealed that environment-dependent aggregation is reduced for PTN/PTN1-6, but cytotoxicity of PTNs on MDA-MB-231 breast cancer showed the same CC50 values around 16 µM and on MCF-10A epithelial breast cells 6 to 5-fold higher values, revealing a selective interaction. Since PTN1-6 lacks activity on breast cells, its presence should differently affect PTN activity, suggesting that aggregation could modulate activity depending on the membrane characteristics. Indeed, increased partitioning and lytic activity of PTN/PTN1-6 were found in model membranes independently of charge density, but affected by the curvature tendency. PTN and PTN/PTN1-6 do not alter morphology and roughness of cancer cells, indicating a superficial interaction with membranes and consistent with results obtained in NMR experiments. Our results indicate that aggregation of PTNs depends on the membrane characteristics and modulates the activity of the peptides.


Assuntos
Antineoplásicos , Neoplasias da Mama , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Lipídeos , Micelas
10.
Chem Phys Lipids ; 232: 104975, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32949566

RESUMO

The synthetic peptides L1A and its acetylated analog (acL1A) display potent Gram-negative bactericidal activities without being hemolytic. We have gathered evidence that the N-terminal acetylation of L1A enhances the lytic activity in anionic vesicles with high capability to insert into and disturb lipid packing of model membranes. Here, the impact of L1A and acL1A was evaluated on a model membrane that mimics the cytoplasmic membrane of Gram-negative bacteria, which is rich in phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), using 3:1 mixture of POPE/DOPG and a variety of techniques. We followed peptide adsorption and penetration by zeta potential determination of large unilamellar vesicles, accessibility of tryptophan residue to acrylamide by quenching assays, and Gibbs isotherms. The secondary structure of the peptide on the membranes was assessed using circular dichroism. Peptide mixing ability with the lipids and phase segregation was assessed by the observation of Langmuir monolayers with fluorescence microscopy, as well as with differential scanning calorimetry thermograms of multilamellar vesicles. All in all, the results indicate that both peptides adsorb and penetrate POPE/DOPG membranes with similar affinities, decreasing the surface charge, and adopting alpha structures. Both peptides mix with DOPG and demix from POPE, and consequently, persist at the interface to larger surface pressures in the presence of PG than in pure PE monolayers. This selective degree of mixing of the peptides with PE and PG leads to peptide-induced segregation of PG from PE, being the less charged peptide, acL1A, able to segregate the lipids more efficiently.


Assuntos
Membrana Celular/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Membranas Artificiais , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Venenos de Vespas/química , Acetilação
11.
Chem Phys Lipids ; 216: 54-64, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253128

RESUMO

Peptide sequences containing acidic and basic residues could potentially have their net charges modulated by bulk pH with a possible influence on their lytic activity in lipid vesicles. The present study reports on a biophysical investigation of these modulatory effects on the synthetic mastoparan-like peptide L1A (IDGLKAIWKKVADLLKNT-NH2). At pH 10.0 L1A was 6 times more efficient in lysing large anionic (1-palmitoyl-oleoyl-sn-glycero-3-phosphocholine (POPC):1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG)/(8:2)) unilamellar vesicles (LUVs) than at pH 4.0. Despite the reduction of 60% in the L1A net charge in basic pH its affinity for this vesicle was almost insensitive to pH. On the other hand, L1A insertion into monolayers was dramatically influenced by subphase condition, showing that, in the neutral and basic subphases, the peptide induced surface pressure changes that surpassed the membrane lateral pressure, being able to destabilize a bilayer structure. In addition, in the basic subphase, visualization of the compression isotherms of co-spread 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC):POPG (8:2) + 4.8 mol% L1A showed that the peptide induced significant changes in solid lipid domains, indicating its capability in perturbing lipid-packing. An insight into L1A lytic activity was also obtained in giant unilamellar vesicles (GUVs) using phase contrast microscopy. The suppression of L1A lytic activity at acidic pH is in keeping with its lower insertion capability and ability to disturb the lipid monolayer. The lytic activity observed under neutral and basic conditions showed a quick and stochastic leakage following a lag-time. The permeability and the leakage-time averaged over at least 14 single GUVs were dependent on the bulk condition. At basic pH, permeability is higher and quicker than in a neutral medium in good accordance with the lipid-packing perturbation.


Assuntos
Peptídeos/síntese química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Venenos de Vespas/síntese química , Ânions/síntese química , Ânions/química , Concentração de Íons de Hidrogênio , Peptídeos e Proteínas de Sinalização Intercelular , Tamanho da Partícula , Peptídeos/química , Propriedades de Superfície , Venenos de Vespas/química
12.
Biophys Rev ; 9(5): 669-682, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28853007

RESUMO

The indiscriminate use of conventional antibiotics is leading to an increase in the number of resistant bacterial strains, motivating the search for new compounds to overcome this challenging problem. Antimicrobial peptides, acting only in the lipid phase of membranes without requiring specific membrane receptors as do conventional antibiotics, have shown great potential as possible substituents of these drugs. These peptides are in general rich in basic and hydrophobic residues forming an amphipathic structure when in contact with membranes. The outer leaflet of the prokaryotic cell membrane is rich in anionic lipids, while the surface of the eukaryotic cell is zwitterionic. Due to their positive net charge, many of these peptides are selective to the prokaryotic membrane. Notwithstanding this preference for anionic membranes, some of them can also act on neutral ones, hampering their therapeutic use. In addition to the electrostatic interaction driving peptide adsorption by the membrane, the ability of the peptide to perturb lipid packing is of paramount importance in their capacity to induce cell lysis, which is strongly dependent on electrostatic and hydrophobic interactions. In the present research, we revised the adsorption of antimicrobial peptides by model membranes as well as the perturbation that they induce in lipid packing. In particular, we focused on some peptides that have simultaneously acidic and basic residues. The net charges of these peptides are modulated by pH changes and the lipid composition of model membranes. We discuss the experimental approaches used to explore these aspects of lipid membranes using lipid vesicles and lipid monolayer as model membranes.

13.
Chem Phys Lipids ; 207(Pt A): 38-48, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802697

RESUMO

Polybia-MP1 or simply MP1 (IDWKKLLDAAKQIL-NH2) is a peptide with broad-spectrum bactericidal activity and a strong inhibitory effect against cancer cells. The aim of this work was to evaluate the effect of biophysical properties such as membrane texture and film thickness on MP1 interaction with neutral and anionic lipid membranes. For this purpose, we first explored the peptide's surface behavior. MP1 showed high surface activity, adsorbing onto bare air/aqueous interfaces up to higher surface pressures than the collapse pressure of MP1 Langmuir films. The MP1-lipid membrane interaction was studied using Langmuir phosphatidylcholine and phosphatidylserine (PS) monolayers as model membrane systems. PS was chosen since this negatively charged lipid was found predominantly on the outer leaflet of tumor cells, and it enhances MP1 activity for PS-containing membranes to a greater extent than for other negatively charged lipids. MP1 incorporated into anionic PS monolayers, which show a liquid-expanded (LE) phase or LE-liquid-condensed (LC) phase coexistence, up to lipid-packing densities higher than those of cell membranes. The mixed lipid/MP1 films were explored by Brewster angle microscopy and atomic force microscopy. MP1 partitioned preferentially into the LE phase state of PS films, and were thus excluded from the coexisting LC phase. This interaction had strong electrostatic bases: in pure water, the lipid-peptide interaction was strong enough to induce formation of reversible lipid-peptide 3D structures associated with the interface. MP1 incorporation into the LE phase was accompanied by a shift of the phase transition pressure to higher values and a thinning of the lipid film. These results showed a clear correlation between peptide penetration capacity and the presence or induction of the thin LE phase. This capacity to regulate membrane physical properties may be of relevance in the binding, incorporation and membrane selectivity of this promising antitumor peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Fosfolipídeos/química , Lipossomas Unilamelares/metabolismo , Venenos de Vespas/química , Venenos de Vespas/metabolismo , Ânions/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Microscopia de Força Atômica , Concentração Osmolar , Propriedades de Superfície , Lipossomas Unilamelares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA