Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Gastroenterol ; 19(44): 8056-64, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24307800

RESUMO

AIM: To evaluate the potential use of colonoscopy and endoluminal ultrasonic biomicroscopy (eUBM) to track the progression of mouse colonic lesions. METHODS: Ten mice were treated with a single azoxymethane intraperitoneal injection (week 1) followed by seven days of a dextran sulfate sodium treatment in their drinking water (week 2) to induce inflammation-associated colon tumors. eUBM was performed simultaneously with colonoscopy at weeks 13, 17-20 and 21. A 3.6-F diameter 40 MHz mini-probe catheter was used for eUBM imaging. The ultrasound mini-probe catheter was inserted into the accessory channel of a pediatric flexible bronchofiberscope, allowing simultaneous acquisition of colonoscopic and eUBM images. During image acquisition, the mice were anesthetized with isoflurane and kept in a supine position over a stainless steel heated surgical waterbed at 37 °C. Both eUBM and colonoscopic images were captured and stored when a lesion was detected by colonoscopy or when the eUBM image revealed a modified colon wall anatomy. During the procedure, the colon was irrigated with water that was injected through a flush port on the mini-probe catheter and that acted as the ultrasound coupling medium between the transducer and the colon wall. Once the acquisition of the last eUBM/colonoscopy section for each animal was completed, the colons were fixed, paraffin-embedded, and stained with hematoxylin and eosin. Colon images acquired at the first time-point for each mouse were compared with subsequent eUBM/colonoscopic images of the same sites obtained in the following acquisitions to evaluate lesion progression. RESULTS: All 10 mice had eUBM and colonoscopic images acquired at week 13 (the first time-point). Two animals died immediately after the first imaging acquisition and, consequently, only 8 mice were subjected to the second eUBM/colonoscopy imaging acquisition (at the second time-point). Due to the advanced stage of colonic tumorigenesis, 5 animals died after the second time-point image acquisition, and thus, only three were subjected to the third eUBM/colonoscopy imaging acquisition (the third time-point). eUBM was able to detect the four layers in healthy segments of colon: the mucosa (the first hyperechoic layer moving away from the mini-probe axis), followed by the muscularis mucosae (hypoechoic), the submucosa (the second hyperechoic layer) and the muscularis externa (the second hypoechoic layer). Hypoechoic regions between the mucosa and the muscularis externa layers represented lymphoid infiltrates, as confirmed by the corresponding histological images. Pedunculated tumors were represented by hyperechoic masses in the mucosa layer. Among the lesions that decreased in size between the first and third time-points, one of the lesions changed from a mucosal hyperplasia with ulceration at the top to a mucosal hyperplasia with lymphoid infiltrate and, finally, to small signs of mucosal hyperplasia and lymphoid infiltrate. In this case, while lesion regression and modification were observable in the eUBM images, colonoscopy was only able to detect the lesion at the first and second time-points, without the capacity to demonstrate the presence of lymphoid infiltrate. Regarding the lesions that increased in size, one of them started as a small elevation in the mucosa layer and progressed to a pedunculated tumor. In this case, while eUBM imaging revealed the lesion at the first time-point, colonoscopy was only able to detect it at the second time-point. All colonic lesions (tumors, lymphoid infiltrate and mucosal thickening) were identified by eUBM, while colonoscopy identified just 76% of them. Colonoscopy identified all of the colonic tumors but failed to diagnose lymphoid infiltrates and increased mucosal thickness and failed to differentiate lymphoid infiltrates from small adenomas. During the observation period, most of the lesions (approximately 67%) increased in size, approximately 14% remained unchanged, and 19% regressed. CONCLUSION: Combining eUBM with colonoscopy improves the diagnosis and the follow-up of mouse colonic lesions, adding transmural assessment of the bowel wall.


Assuntos
Colo/diagnóstico por imagem , Colo/patologia , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Colonoscopia , Endossonografia , Microscopia Acústica , Animais , Azoximetano , Broncoscópios , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Colonoscópios , Colonoscopia/instrumentação , Sulfato de Dextrana , Progressão da Doença , Endossonografia/instrumentação , Desenho de Equipamento , Feminino , Genes p53 , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Microscopia Acústica/instrumentação , Miniaturização , Valor Preditivo dos Testes , Fatores de Tempo
2.
Acad Radiol ; 20(1): 90-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22959583

RESUMO

RATIONALE AND OBJECTIVES: The gold-standard tool for colorectal cancer detection is colonoscopy, but it provides only mucosal surface visualization. Ultrasound biomicroscopy allows a clear delineation of the epithelium and adjacent colonic layers. The aim of this study was to design a system to generate endoluminal ultrasound biomicroscopic images of the mouse colon, in vivo, in an animal model of inflammation-associated colon cancer. MATERIALS AND METHODS: Thirteen mice (Mus musculus) were used. A 40-MHz miniprobe catheter was inserted into the accessory channel of a pediatric flexible bronchofiberscope. Control mice (n = 3) and mice treated with azoxymethane and dextran sulfate sodium (n = 10) were subjected to simultaneous endoluminal ultrasound biomicroscopy and white-light colonoscopy. The diagnosis obtained with endoluminal ultrasound biomicroscopy and colonoscopy was compared and confirmed by postmortem histopathology. RESULTS: Endoluminal ultrasound biomicroscopic images showed all layers of the normal colon and revealed lesions such as lymphoid hyperplasias and colon tumors. Additionally, endoluminal ultrasound biomicroscopy was able to detect two cases of mucosa layer thickening, confirmed by histology. Compared to histologic results, the sensitivities of endoluminal ultrasound biomicroscopy and colonoscopy were 0.95 and 0.83, respectively, and both methods achieved specificities of 1.0. CONCLUSIONS: Endoluminal ultrasound biomicroscopy can be used, in addition to colonoscopy, as a diagnostic method for colonic lesions. Moreover, experimental endoluminal ultrasound biomicroscopy in mouse models is feasible and might be used to further develop research on the differentiation between benign and malignant colonic diseases.


Assuntos
Neoplasias Colorretais/diagnóstico por imagem , Endossonografia/métodos , Microscopia Acústica/métodos , Animais , Colonoscopia , Modelos Animais de Doenças , Desenho de Equipamento , Camundongos , Microscopia Acústica/instrumentação
3.
Ultrasound Med Biol ; 37(12): 2086-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22033129

RESUMO

The present work tested the capability of ultrasound biomicroscopy (UBM), at 45 MHz, to provide cross-sectional images with appropriate resolution and contrast to detect tumors and determine their penetration depths on the colon of mice, Mus musculus (Linnaeus 1758), treated with carcinogen for colon tumor induction. B-mode images were obtained, in vitro, from each animal (13 treated and 4 untreated) colon opened longitudinally and immersed in saline solution at room temperature. Prior to UBM inspection, all animals were also examined by colonoscopy. The layers of normal colon identified by UBM are: mucosa (hyperechoic), muscularis mucosae (hypoechoic), submucosa (hyperechoic) and muscularis externa (hypoechoic). UBM images of colon lesions presented structures corresponding to tumors (hyperechoic), lymphoid hyperplasia (hypoechoic) and polypoid tumors (hyperechoic). Additionally, tumoral lesion invasion through the colon was also identified. When compared with histopathologic analysis, all colon lesions detected by UBM were confirmed, while colonoscopic findings had two false negatives.


Assuntos
Neoplasias do Colo/diagnóstico , Colonoscopia/métodos , Microscopia Acústica/métodos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA