Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circ Res ; 116(3): 398-406, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25599332

RESUMO

RATIONALE: Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. OBJECTIVE: To determine the role of canonical Wnt signaling in the myocardium during AVC development. METHODS AND RESULTS: We used a novel allele of ß-catenin that preserves ß-catenin's cell adhesive functions but disrupts canonical Wnt signaling, allowing us to probe the effects of Wnt loss of function independently. We show that the loss of canonical Wnt signaling in the myocardium results in tricuspid atresia with hypoplastic right ventricle associated with the loss of AVC myocardium. In contrast, ectopic activation of Wnt signaling was sufficient to induce formation of ectopic AV junction-like tissue as assessed by morphology, gene expression, and electrophysiological criteria. Aberrant AVC development can lead to ventricular pre-excitation, a characteristic feature of Wolff-Parkinson-White syndrome. We demonstrate that postnatal activation of Notch signaling downregulates canonical Wnt targets within the AV junction. Stabilization of ß-catenin protein levels can rescue Notch-mediated ventricular pre-excitation and dysregulated ion channel gene expression. CONCLUSIONS: Our data demonstrate that myocardial canonical Wnt signaling is an important regulator of AVC maturation and electric programming upstream of Tbx3. Our data further suggest that ventricular pre-excitation may require both morphological patterning defects, as well as myocardial lineage reprogramming, to allow robust conduction across accessory pathway tissue.


Assuntos
Átrios do Coração/metabolismo , Sistema de Condução Cardíaco/metabolismo , Ventrículos do Coração/metabolismo , Atresia Tricúspide/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Átrios do Coração/embriologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/fisiopatologia , Camundongos , Miocárdio/metabolismo , Receptores Notch/metabolismo , Proteínas com Domínio T/metabolismo , Atresia Tricúspide/genética , Atresia Tricúspide/fisiopatologia , beta Catenina/genética
2.
Virol J ; 2: 45, 2005 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15904535

RESUMO

BACKGROUND: Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. RESULTS: DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. CONCLUSION: Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants.


Assuntos
DNA Viral/isolamento & purificação , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas/virologia , RNA Viral/isolamento & purificação , Virologia/métodos , África , DNA Viral/genética , Solanum lycopersicum/virologia , Manihot/virologia , Folhas de Planta/virologia , Vírus de Plantas/genética , RNA Viral/genética , Sensibilidade e Especificidade , Nicotiana/virologia , Zea mays/virologia
3.
Biomaterials ; 34(28): 6559-71, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23773820

RESUMO

Direct reprogramming strategies enable rapid conversion of somatic cells to cardiomyocytes or cardiomyocyte-like cells without going through the pluripotent state. A recently described protocol couples Yamanaka factor induction with pluripotency inhibition followed by BMP4 treatment to achieve rapid reprogramming of mouse fibroblasts to beating cardiomyocyte-like cells. The original study was performed using Matrigel-coated tissue culture polystyrene (TCPS), a stiff material that also non-specifically adsorbs serum proteins. Protein adsorption-resistant poly(ethylene glycol) (PEG) materials can be covalently modified to present precise concentrations of adhesion proteins or peptides without the unintended effects of non-specifically adsorbed proteins. Here, we describe an improved protocol that incorporates custom-engineered materials. We first reproduced the Efe et al. protocol on Matrigel-coated TCPS (the original material), reprogramming adult mouse tail-tip mouse fibroblasts (TTF) and mouse embryonic fibroblasts (MEF) to cardiomyocyte-like cells that demonstrated striated sarcomeric α-actinin staining, spontaneous calcium transients, and visible beating. We then designed poly(ethylene glycol) culture substrates to promote MEF adhesion via laminin and RGD-binding integrins. PEG hydrogels improved proliferation and reprogramming efficiency (evidenced by beating patch number and area, gene expression, and flow cytometry), yielding almost twice the number of sarcomeric α-actinin positive cardiomyocyte-like cells as the originally described substrate. These results illustrate that cellular reprogramming may be enhanced using custom-engineered materials.


Assuntos
Fibroblastos/patologia , Hidrogéis/química , Polietilenoglicóis/química , Animais , Células Cultivadas , Reprogramação Celular/fisiologia , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Microscopia de Contraste de Fase , Miócitos Cardíacos/metabolismo , Nicho de Células-Tronco/fisiologia
4.
PLoS One ; 8(6): e66131, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776620

RESUMO

Our previous studies demonstrated that Wnt/GSK-3/ß-catenin and mTOR signaling are necessary to stimulate proliferative processes in adult human ß-cells. Direct inhibition of GSK-3, that engages Wnt signaling downstream of the Wnt receptor, increases ß-catenin nuclear translocation and ß-cell proliferation but results in lower insulin content. Our current goal was to engage canonical and non-canonical Wnt signaling at the receptor level to significantly increase human ß-cell proliferation while maintaining a ß-cell phenotype in intact islets. We adopted a system that utilized conditioned medium from L cells that expressed Wnt3a, R-spondin-3 and Noggin (L-WRN conditioned medium). In addition we used a ROCK inhibitor (Y-27632) and SB-431542 (that results in RhoA inhibition) in these cultures. Treatment of intact human islets with L-WRN conditioned medium plus inhibitors significantly increased DNA synthesis ∼6 fold in a rapamycin-sensitive manner. Moreover, this treatment strikingly increased human ß-cell proliferation ∼20 fold above glucose alone. Only the combination of L-WRN conditioned medium with RhoA/ROCK inhibitors resulted in substantial proliferation. Transcriptome-wide gene expression profiling demonstrated that L-WRN medium provoked robust changes in several signaling families, including enhanced ß-catenin-mediated and ß-cell-specific gene expression. This treatment also increased expression of Nr4a2 and Irs2 and resulted in phosphorylation of Akt. Importantly, glucose-stimulated insulin secretion and content were not downregulated by L-WRN medium treatment. Our data demonstrate that engaging Wnt signaling at the receptor level by this method leads to necessary crosstalk between multiple signaling pathways including activation of Akt, mTOR, Wnt/ß-catenin, PKA/CREB, and inhibition of RhoA/ROCK that substantially increase human ß-cell proliferation while maintaining the ß-cell phenotype.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Via de Sinalização Wnt/fisiologia , Adulto , Amidas , Benzamidas , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Dioxóis , Perfilação da Expressão Gênica , Humanos , Piridinas , Receptor Cross-Talk/fisiologia , Trombospondinas/metabolismo , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Quinases Associadas a rho/antagonistas & inibidores
5.
PLoS One ; 8(5): e62012, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23650507

RESUMO

Major bottlenecks in the expansion of human ß-cell mass are limited proliferation, loss of ß-cell phenotype, and increased apoptosis. In our previous studies, activation of Wnt and mTOR signaling significantly enhanced human ß-cell proliferation. However, isolated human islets displayed insulin signaling pathway resistance, due in part to chronic activation of mTOR/S6K1 signaling that results in negative feedback of the insulin signaling pathway and a loss of Akt phosphorylation and insulin content. We evaluated the effects of a new generation insulin sensitizer, MSDC-0160, on restoring insulin/IGF-1 sensitivity and insulin content in human ß-cells. This novel TZD has low affinity for binding and activation of PPARγ and has insulin-sensitizing effects in mouse models of diabetes and ability to lower glucose in Phase 2 clinical trials. MSDC-0160 treatment of human islets increased AMPK activity and reduced mTOR activity. This was associated with the restoration of IGF-1-induced phosphorylation of Akt, GSK-3, and increased protein expression of Pdx1. Furthermore, MSDC-0160 in combination with IGF-1 and 8 mM glucose increased ß-cell specific gene expression of insulin, pdx1, nkx6.1, and nkx2.2, and maintained insulin content without altering glucose-stimulated insulin secretion. Human islets were unable to simultaneously promote DNA synthesis and maintain the ß-cell phenotype. Lithium-induced GSK-3 inhibition that promotes DNA synthesis blocked the ability of MSDC-0160 to maintain the ß-cell phenotype. Conversely, MSDC-0160 prevented an increase in DNA synthesis by blocking ß-catenin nuclear translocation. Due to the counteracting pathways involved in these processes, we employed a sequential ex vivo strategy to first induce human islet DNA synthesis, followed by MSDC-0160 to promote the ß-cell phenotype and insulin content. This new generation PPARγ sparing insulin sensitizer may provide an initial tool for relieving inherent human islet insulin signaling pathway resistance that is necessary to preserve the ß-cell phenotype during ß-cell expansion for the treatment of diabetes.


Assuntos
Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/metabolismo , Piridinas/farmacologia , Tiazolidinedionas/farmacologia , Adenilato Quinase/metabolismo , Animais , Apoptose/genética , Núcleo Celular/metabolismo , Células Cultivadas , Replicação do DNA , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Fator de Crescimento Insulin-Like I/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas Nucleares , Fenótipo , Fosforilação , Pró-Proteína Convertase 2/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Técnicas de Cultura de Tecidos , Fatores de Transcrição , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA