Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Physiol Endocrinol Metab ; 318(4): E441-E452, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935111

RESUMO

During pregnancy, the uterus transitions from a quiescent state to an excitable, highly contractile state to deliver the fetus. Two important contributors essential for this transition are hormones and ion channels, both of which modulate myometrial smooth muscle cell (MSMC) excitability. Recently, the sodium (Na+) leak channel, nonselective (NALCN), was shown to contribute to a Na+ leak current in human MSMCs, and mice lacking NALCN in the uterus had dysfunctional labor. Microarray data suggested that the proquiescent hormone progesterone (P4) and the procontractile hormone estrogen (E2) regulated this channel. Here, we sought to determine whether P4 and E2 directly regulate NALCN. In human MSMCs, we found that NALCN mRNA expression decreased by 2.3-fold in the presence of E2 and increased by 5.6-fold in the presence of P4. Similarly, E2 treatment decreased, and P4 treatment restored NALCN protein expression. Additionally, E2 significantly inhibited, and P4 significantly enhanced an NALCN-dependent leak current in MSMCs. Finally, we identified estrogen response and progesterone response elements (EREs and PREs) in the NALCN promoter. With the use of luciferase assays, we showed that the PREs, but not the ERE, contributed to regulation of NALCN expression. Our findings reveal a new mechanism by which NALCN is regulated in the myometrium and suggest a novel role for NALCN in pregnancy.


Assuntos
Estradiol/farmacologia , Canais Iônicos/biossíntese , Canais Iônicos/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Miócitos de Músculo Liso/metabolismo , Miométrio/metabolismo , Progesterona/farmacologia , Adulto , Linhagem Celular , Feminino , Humanos , Mutação/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Miométrio/efeitos dos fármacos , Gravidez , RNA Mensageiro/biossíntese , Elementos de Resposta/efeitos dos fármacos
2.
Biol Reprod ; 102(4): 935-942, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31768528

RESUMO

Uterine contractions are important for various functions of the female reproductive cycle. Contractions are generated, in part, by electrical coupling of smooth muscle cells of the myometrium, the main muscle layer of the uterus. Aberrant myometrial electrical activity can lead to uterine dysfunction. To better understand and treat conditions associated with aberrant activity, it is crucial to understand the mechanisms that underlie normal activity. Here, we used microelectrode array (MEA) to simultaneously record and characterize myometrial electrical activities at high spatial and temporal resolution. Mouse myometrial longitudinal muscle tissue was isolated at different stages throughout the estrous cycle and placed on an 8×8 MEA. Electrical activity was recorded for 10 min at a sampling rate of 12.5 kHz. We used a spike-tracking algorithm to independently analyze each channel and developed a pipeline to quantify the amplitude, duration, frequency, and synchronicity of the electrical activities. Electrical activities in estrous were more synchronous, and had shorter duration, higher frequency, and lower amplitude than electrical activities in non-estrous. We conclude that MEA can be used to detect differential patterns of myometrial electrical activity in distinct estrous cycle stages. In the future, this methodology can be used to assess different physiological and pathological states and evaluate therapeutic agents that regulate uterine function.


Assuntos
Ciclo Estral/fisiologia , Músculo Liso/fisiologia , Contração Uterina/fisiologia , Útero/fisiologia , Algoritmos , Animais , Feminino , Camundongos , Microeletrodos , Miométrio/fisiologia
3.
J Physiol ; 597(1): 137-149, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30334255

RESUMO

KEY POINTS: At the end of pregnancy, the uterus transitions from a quiescent state to a highly contractile state. This transition requires that the uterine (myometrial) smooth muscle cells increase their excitability, although how this occurs is not fully understood. We identified SLO2.1, a potassium channel previously unknown in uterine smooth muscle, as a potential significant contributor to the electrical excitability of myometrial smooth muscle cells. We found that activity of the SLO2.1 channel is negatively regulated by oxytocin via Gαq-protein-coupled receptor activation of protein kinase C. This results in depolarization of the uterine smooth muscle cells and calcium entry, which may contribute to uterine contraction. These findings provide novel insights into a previously unknown mechanism by which oxytocin may act to modulate myometrial smooth muscle cell excitability. Our findings also reveal a new potential pharmacological target for modulating uterine excitability. ABSTRACT: During pregnancy, the uterus transitions from a quiescent state to a more excitable contractile state. This is considered to be at least partly a result of changes in the myometrial smooth muscle cell (MSMC) resting membrane potential. However, the ion channels controlling the myometrial resting membrane potential and the mechanism of transition to a more excitable state have not been fully clarified. In the present study, we show that the sodium-activated, high-conductance, potassium leak channel, SLO2.1, is expressed and active at the resting membrane potential in MSMCs. Additionally, we report that SLO2.1 is inhibited by oxytocin binding to the oxytocin receptor. Inhibition of SLO2.1 leads to membrane depolarization and activation of voltage-dependent calcium channels, resulting in calcium influx. The results of the present study reveal that oxytocin may modulate MSMC electrical activity by inhibiting SLO2.1 potassium channels.


Assuntos
Miócitos de Músculo Liso/fisiologia , Miométrio/fisiologia , Ocitocina/fisiologia , Canais de Potássio Ativados por Sódio/antagonistas & inibidores , Animais , Células Cultivadas , Feminino , Humanos , Oócitos/fisiologia , Canais de Potássio Ativados por Sódio/genética , Canais de Potássio Ativados por Sódio/fisiologia , Contração Uterina/fisiologia , Xenopus laevis
4.
Proc Natl Acad Sci U S A ; 113(16): E2335-44, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044074

RESUMO

The large-conductance, voltage-gated, calcium (Ca(2+))-activated potassium channel (BKCa) plays an important role in regulating Ca(2+)signaling and is implicated in the maintenance of uterine quiescence during pregnancy. We used immunopurification and mass spectrometry to identify proteins that interact with BKCain myometrium samples from term pregnant (≥37 wk gestation) women. From this screen, we identified alpha-2-macroglobulin (α2M). We then used immunoprecipitation followed by immunoblot and the proximity ligation assay to confirm the interaction between BKCaand both α2M and its receptor, low-density lipoprotein receptor-related protein 1 (LRP1), in cultured primary human myometrial smooth muscle cells (hMSMCs). Single-channel electrophysiological recordings in the cell-attached configuration demonstrated that activated α2M (α2M*) increased the open probability of BKCain an oscillatory pattern in hMSMCs. Furthermore, α2M* caused intracellular levels of Ca(2+)to oscillate in oxytocin-primed hMSMCs. The initiation of oscillations required an interaction between α2M* and LRP1. By using Ca(2+)-free medium and inhibitors of various Ca(2+)signaling pathways, we demonstrated that the oscillations required entry of extracellular Ca(2+)through store-operated Ca(2+)channels. Finally, we found that the specific BKCablocker paxilline inhibited the oscillations, whereas the channel opener NS11021 increased the rate of these oscillations. These data demonstrate that α2M* and LRP1 modulate the BKCachannel in human myometrium and that BKCaand its immunomodulatory interacting partners regulate Ca(2+)dynamics in hMSMCs during pregnancy.


Assuntos
Sinalização do Cálcio/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Miócitos de Músculo Liso/metabolismo , Miométrio/metabolismo , Gravidez/metabolismo , alfa-Macroglobulinas/metabolismo , Adulto , Células Cultivadas , Feminino , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Miométrio/citologia , Terceiro Trimestre da Gravidez/metabolismo
5.
Cell Physiol Biochem ; 48(2): 503-515, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30021195

RESUMO

BACKGROUND/AIMS: Uterine contractility is controlled by electrical signals generated by myometrial smooth muscle cells. Because aberrant electrical signaling may cause inefficient uterine contractions and poor reproductive outcomes, there is great interest in defining the ion channels that regulate uterine excitability. In human myometrium, the Na+ leak channel, non-selective (NALCN) contributes to a gadolinium-sensitive, Na+-dependent leak current. The aim of this study was to determine the role of NALCN in regulating uterine excitability and examine its involvement in parturition. METHODS: Wildtype C57BL/6J mice underwent timed-mating and NALCN uterine expression was measured at several time points across pregnancy including pregnancy days 7, 10, 14, 18 and 19. Sharp electrode current clamp was used to measure uterine excitability at these same time points. To determine NALCN's contribution to myometrial excitability and pregnancy outcomes, we created smooth-muscle-specific NALCN knockout mice by crossing NALCNfx/fx mice with myosin heavy chain Cre (MHCCreeGFP) mice. Parturition outcomes were assessed by observation via surveillance video recording cre control, flox control, smNALCN+/-, and smNALCN-/- mice. Myometrial excitability was compared between pregnancy day 19 flox controls and smNALCN-/- mice. RESULTS: We found that in the mouse uterus, NALCN protein levels were high early in pregnancy, decreased in mid and late pregnancy, and then increased in labor and postpartum. Sharp electrode current clamp recordings of mouse longitudinal myometrial samples from pregnancy days 7, 10, 14, 18, and 19 revealed day-dependent increases in burst duration and interval and decreases in spike density. NALCN smooth muscle knockout mice had reduced myometrial excitability exemplified by shortened action potential bursts, and an increased rate of abnormal labor, including prolonged and dysfunctional labor. CONCLUSIONS: Together, our findings demonstrate that the Na+ conducting channel NALCN contributes to the myometrial action potential waveform and is important for successful labor outcomes.


Assuntos
Canais Iônicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Útero/patologia , Potenciais de Ação , Animais , Feminino , Canais Iônicos/deficiência , Canais Iônicos/genética , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso/citologia , Músculo Liso/metabolismo , Miométrio/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Gravidez , Contração Uterina , Útero/metabolismo , Útero/fisiologia
6.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38853884

RESUMO

At the end of pregnancy, the uterus transitions from a quiescent to a highly contractile state. This is partly due to depolarization of the resting membrane potential in uterine (myometrial) smooth muscle cells (MSMCs). Experiments with human MSMCs showed that the membrane potential is regulated by a functional complex between the sodium (Na+)-activated potassium (K+) channel SLO2.1 and the Na+ Leak Channel Non-Selective (NALCN). In human MSMCs, Na+ entering through NALCN activates SLO2.1, leading to K+ efflux, membrane hyperpolarization (cells become more negative inside), and reduced contractility. Decreased SLO2.1/NALCN activity results in reduced K+ efflux, leading to membrane depolarization, Ca2+ influx via voltage-dependent calcium channels, and increased MSMC contractility. However, all of these experiments were performed with MSMCs isolated from women at term, so the role of the SLO2.1/NALCN complex early in pregnancy was speculative. To address this question here, we examined the role of the SLO2.1/NALCN complex in regulating mouse MSMC membrane potential across pregnancy. We report that Slo2.1 and Nalcn expression change along pregnancy, being more highly expressed in MSMCs from non-pregnant and early pregnant mice than in those from late-pregnant mice. Functional studies revealed that SLO2.1 channels mediate a significant portion of the K+ current in mouse MSMCs, particularly in cells from non-pregnant and early pregnant mice. Activation of SLO2.1 by Na+ influx through NALCN led to membrane hyperpolarization in MSMCs from early pregnancy but not in MSMCs from later pregnancy. Moreover, we found that the NALCN/SLO2.1 complex regulates intracellular Ca2+ responses more in MSMCs from non-pregnant and early pregnancy mice than in MSMCs from late pregnancy. Together, these findings reveal that the SLO2.1/NALCN functional complex is conserved between mouse and humans and functions throughout pregnancy. This work could open avenues for targeted pharmacological interventions in pregnancy-related complications.

7.
Mamm Genome ; 22(1-2): 111-21, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21125402

RESUMO

Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We report an initial analysis of copy number variations (CNVs) in cattle selected for resistance or susceptibility to intestinal nematodes. We performed three array comparative genomic hybridization (CGH) experiments to compare Angus cattle with extreme phenotypes for fecal egg count and serum pepsinogen level. We identified 20 CNVs in total, of which 12 were within known chromosomes harboring or adjacent to gains or losses. About 85% of the CNV identified (17/20) overlapped with cattle CNV regions that were reported recently. Selected CNVs were further validated by independent methods using quantitative PCR (qPCR) and FISH. Pathway analyses indicated that annotated cattle genes within these variable regions are particularly enriched for immune function affecting receptor activities, signal transduction, and transcription. Analysis of transcription factor binding sites (TFBS) within the promoter regions of differentially expressed genes suggested that common transcription factors are probably involved in parasite resistance. These results provide valuable hypotheses for the future study of cattle CNVs underlying economically important health and production traits.


Assuntos
Doenças dos Bovinos/genética , Doenças dos Bovinos/imunologia , Bovinos , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Enteropatias Parasitárias/veterinária , Nematoides/fisiologia , Infecções por Nematoides/veterinária , Animais , Bovinos/genética , Bovinos/imunologia , Bovinos/parasitologia , Doenças dos Bovinos/parasitologia , Feminino , Imunidade Inata , Enteropatias Parasitárias/genética , Enteropatias Parasitárias/imunologia , Enteropatias Parasitárias/parasitologia , Masculino , Infecções por Nematoides/genética , Infecções por Nematoides/imunologia
8.
iScience ; 24(11): 103210, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34746693

RESUMO

Depolarization of the myometrial smooth muscle cell (MSMC) resting membrane potential is necessary for the uterus to transition from a quiescent state to a contractile state. The molecular mechanisms involved in this transition are not completely understood. Here, we report that a coupled system between the Na+-activated K+ channel (SLO2.1) and the non-selective Na+ leak channel (NALCN) determines the MSMC membrane potential. Our data indicate that Na+ entering through NALCN acts as an intracellular signaling molecule that activates SLO2.1. Potassium efflux through SLO2.1 hyperpolarizes the membrane. A decrease in SLO2.1/NALCN activity induces membrane depolarization, triggering Ca2+ entry through voltage-dependent Ca2+ channels and promoting contraction. Consistent with functional coupling, our data show that NALCN and SLO2.1 are in close proximity in human MSMCs. We propose that these arrangements of SLO2.1 and NALCN permit these channels to functionally regulate MSMC membrane potential and cell excitability and modulate uterine contractility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA