Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39383065

RESUMO

Large abscesses are walled-off collections of pus and bacteria that often do not respond to antibiotic therapy. Standard of care involves percutaneous placement of indwelling catheter(s) for drainage, a long and uncomfortable process with high rehospitalization rates. The long-term goal of this work is to develop therapeutic ultrasound approaches to eradicate bacteria within abscesses as a noninvasive therapeutic alternative. Inertial cavitation induced by short pulses of focused ultrasound (histotripsy) is known to generate lethal mechanical damage in bacteria. Prior studies with Escherichia coli (E. coli) in suspension demonstrated that bactericidal effects increase with increasing peak negative amplitude, treatment time and duty cycle. The current study investigated correlates of bactericidal activity with histotripsy cavitation cloud size. Histotripsy was applied to E. coli suspensions in 10-mL sample vials at 810 kHz, 1.2 MHz, or 3.25 MHz for 40 minutes. The cavitation activity in the sample vials was separately observed with high-speed photography. The cavitation cloud area was quantified from those images. A linear relationship was observed between bacterial inactivation and cavitation cloud size (R2 = 0.96), regardless of the acoustic parameters (specifically frequency, pulse duration and power) used to produce the cloud.

2.
Ultrasound Med Biol ; 49(12): 2451-2458, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37718123

RESUMO

OBJECTIVE: Bacterial loads can be effectively reduced using cavitation-mediated focused ultrasound, or histotripsy. In this study, gram-negative bacteria (Escherichia coli) in suspension were used as model bacteria to evaluate the effectiveness of two regimens of histotripsy treatments: cavitation histotripsy (CH) and boiling histotripsy (BH). METHODS: Ten-milliliter volumes of Escherichia coli were treated at different negative focal pressure amplitudes and over time periods up to 40 min. Cavitation activity was characterized with coaxial passive cavitation detection (PCD) and synchronized plane wave B-mode imaging. RESULTS: CH treatments exhibited a threshold behavior that was consistent with PCD metrics of cavitation. Above the threshold, bacterial inactivation followed a monotonically increasing log-linear relationship that indicated an exponential inactivation rate. BH exhibited no threshold, but instead followed a different monotonically increasing inactivation rate. Inactivation rates were larger for BH at or below the CH threshold, and larger for CH substantially above the threshold. CH studies performed at different pulse lengths at the same duty cycle had similar inactivation rates, suggesting that at any given pressure amplitude, the "on time" was the most important variable for inactivating E. coli. The maximum inactivation was produced by CH at the highest pressure amplitudes used, leading to a log reduction >4.2 for a 40 min treatment. CONCLUSION: The results of this study suggest that both CH and BH can be used to inactivate E. coli in suspension, with the optimal regimen depending on the attainable peak negative focal pressure at the target.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Litotripsia , Escherichia coli , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Litotripsia/métodos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA