Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 65(3): 100507, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38272355

RESUMO

Finasteride is commonly prescribed to treat benign prostate hyperplasia and male-pattern baldness in cis men and, more recently, trans individuals. However, the effect of finasteride on cardiovascular disease remains elusive. We evaluated the role of finasteride on atherosclerosis using low-density lipoprotein (LDL) receptor-deficient (Ldlr-/-) mice. Next, we examined the relevance to humans by analyzing the data deposited between 2009 and 2016 in the National Health and Nutrition Examination Survey. We show that finasteride reduces total plasma cholesterol and delays the development of atherosclerosis in Ldlr-/- mice. Finasteride reduced monocytosis, monocyte recruitment to the lesion, macrophage lesion content, and necrotic core area, the latter of which is an indicator of plaque vulnerability in humans. RNA sequencing analysis revealed a downregulation of inflammatory pathways and an upregulation of bile acid metabolism, oxidative phosphorylation, and cholesterol pathways in the liver of mice taking finasteride. Men reporting the use of finasteride showed lower plasma levels of cholesterol and LDL-cholesterol than those not taking the drug. Our data unveil finasteride as a potential treatment to delay cardiovascular disease in people by improving the plasma lipid profile.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Masculino , Animais , Camundongos , Finasterida/farmacologia , Finasterida/uso terapêutico , Inquéritos Nutricionais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Receptores de LDL/genética , Camundongos Knockout
2.
Artigo em Inglês | MEDLINE | ID: mdl-39017681

RESUMO

Perinatal nutrition exerts a profound influence on adult metabolic health. This study aimed to investigate whether increased maternal vitamin A (VA) supply can lead to beneficial metabolic phenotypes in the offspring. The researchers utilized mice deficient in the intestine-specific homeobox (ISX) transcription factor, which exhibit increased intestinal VA retinoid production from dietary ß-carotene (BC). ISX-deficient dams were fed a VA-sufficient or a BC-enriched diet during the last week of gestation and the whole lactation period. Total retinol levels in milk and weanling livers were 2 to 2.5-fold higher in the offspring of BC-fed dams (BC offspring), indicating increased VA supplies during late gestation and lactation. The corresponding VAS and BC offspring (males and females) were compared at weaning and adulthood after being fed either a standard or high-fat diet (HFD) with regular VA content for 13 weeks from weaning. HFD-induced increases in adiposity metrics, such as fat depot mass and adipocyte diameter, were more pronounced in males than females and were attenuated or suppressed in the BC offspring. Notably, the BC offspring were protected from HFD-induced increases in circulating triacylglycerol levels and hepatic steatosis. These protective effects were associated with reduced food efficiency, enhanced capacity for thermogenesis and mitochondrial oxidative metabolism in adipose tissues, and increased adipocyte hyperplasia rather than hypertrophy in the BC offspring. In conclusion, maternal VA nutrition influenced by genetics may confer metabolic benefits to the offspring, with mild increases in late gestation and lactation protecting against obesity and metabolic dysregulation in adulthood.

3.
Arterioscler Thromb Vasc Biol ; 43(9): 1617-1625, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409532

RESUMO

Therapeutic approaches to reduce atherogenic lipid and lipoprotein levels remain the most effective and assessable strategies to prevent and treat cardiovascular disease. The discovery of novel research targets linked to pathways associated with cardiovascular disease development has enhanced our ability to decrease disease burden; however, residual cardiovascular disease risks remain. Advancements in genetics and personalized medicine are essential to understand some of the factors driving residual risk. Biological sex is among the most relevant factors affecting plasma lipid and lipoprotein profiles, playing a pivotal role in the development of cardiovascular disease. This minireview summarizes the most recent preclinical and clinical studies covering the effect of sex on plasma lipid and lipoprotein levels. We highlight the recent advances in the mechanisms regulating hepatic lipoprotein production and clearance as potential drivers of disease presentation. We focus on using sex as a biological variable in studying circulating lipid and lipoprotein levels.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Masculino , Feminino , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , Lipoproteínas/metabolismo , Aterosclerose/prevenção & controle , Triglicerídeos
4.
J Nutr ; 153(8): 2216-2227, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269907

RESUMO

BACKGROUND: ß-carotene oxygenase 1 (BCO1) and ß-carotene oxygenase 2 (BCO2) are responsible for the cleavage of carotenoids in mammals. OBJECTIVE: The goals of this study were to (1) establish the relative contribution of each enzyme on lycopene accumulation in mice and (2) examine the role of lycopene on gene expression in the gut of wild type (WT) mice. METHODS: We utilized male and female WT, Bco1-/-, Bco2-/-, and Bco1-/-Bco2-/- double knockout (DKO) mice. We gavaged the mice with either 1 mg of lycopene resuspended in cottonseed oil or vehicle as a control group daily for 2 wk. In a second study, we evaluated the effect of dietary vitamin A on lycopene absorption and intestinal gene expression by RT-PCR. We also quantified lycopene concentration isomer distribution by high performance liquid chromatography. RESULTS: Of the 11 tissues measured, the liver accounted for 94 to 98% of the lycopene content across genotypes. We did not observe sex differences between genotypes, although hepatic lycopene levels in Bco1-/- mice were approximately half in comparison to the other genotypes; Bco1-/- verses Bco2-/- (P < 0.0001), DKO mice (P < 0.001), WT (ns). Analyses of mitochondrial lycopene content revealed a 3- to 5-fold enrichment compared with total hepatic content (P < 0.05) in all genotypes and sexes. In our second study, WT mice fed a vitamin A-deficient diet (VAD) accumulated greater amounts of lycopene in the liver than those fed a vitamin A-sufficient diet (VAS) (P < 0.01). These changes were accompanied by an upregulation of the vitamin A-responsive transcription factor intestine specific homeobox (ISX) in mice fed VAD + lycopene and VAS + lycopene diets compared with VAD control-fed mice (P < 0.05). CONCLUSIONS: Our data suggest that BCO2 is the primary lycopene cleavage enzyme in mice. Lycopene concentration was enriched in the mitochondria of hepatocytes independently of genotype, and lycopene stimulated vitamin A signaling in WT mice.


Assuntos
Dioxigenases , beta Caroteno , Feminino , Masculino , Camundongos , Animais , Licopeno , beta Caroteno/metabolismo , Camundongos Transgênicos , Vitamina A , Dioxigenases/genética , Dioxigenases/metabolismo , Camundongos Knockout , Carotenoides/metabolismo , Mamíferos/metabolismo
5.
BMC Med Educ ; 23(1): 386, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237295

RESUMO

The aim of this study was to determine whether the pandemic has reinforced the choice of pursuing health-related bachelor's degrees, and to identify underlying factors that could contribute to that impact. This is a cross-sectional study using an online survey of 2,344 students of nursing, physiotherapy, medicine, psychology and podiatry who started health-related bachelor's degrees after the COVID-19 outbreak in Spanish higher education institutions. The pandemic influenced the choice of these studies by increasing the desire to help others (33.2%), by increasing citizenship values (28.4%), and by increasing the desire to contribute to improving the situation of the country (27.5%). Women had a significantly greater influence on the increase in social values related to the practice of the profession produced by the pandemic, whereas men and the bachelor's degree in podiatry were more influenced by salary prospects. An increased desire to help others was significantly higher among women and nursing and medical students. Podiatry and psychology were the degrees were most influenced by the pandemic, as more students decided to pursue them, something they had previously doubted, while in nursing, psychology, and medicine the pandemic reinforced their interest in pursuing the degree the most. Students personally affected by COVID-19 reported being more influenced in reconsidering their professional path and in reinforcing their desire to pursue the health-related studies.


Assuntos
COVID-19 , Estudantes de Medicina , Estudantes de Enfermagem , Masculino , Humanos , Feminino , COVID-19/epidemiologia , Pandemias , Espanha/epidemiologia , Estudos Transversais , Inquéritos e Questionários , Estudantes de Medicina/psicologia , Estudantes de Enfermagem/psicologia
6.
Mol Pharmacol ; 99(3): 175-183, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33384285

RESUMO

Acyl-CoA:cholesterol acyltransferase (ACAT) mediates cellular cholesterol esterification. In atherosclerotic plaque macrophages, ACAT promotes cholesteryl ester accumulation, resulting in foam cell formation and atherosclerosis progression. Its complete inactivation in mice, however, showed toxic effects because of an excess of free cholesterol (FC) in macrophages, which can cause endoplasmic reticulum stress, cholesterol crystal formation, and inflammasome activation. Our previous studies showed that long-term partial ACAT inhibition, achieved by dietary supplementation with Fujirebio F1394, delays atherosclerosis progression in apoprotein E-deficient (Apoe -/-) mice by reducing plaque foam cell formation without inflammatory or toxic effects. Here, we determined whether short-term partial inhibition of ACAT, in combination with an enhanced systemic FC acceptor capacity, has synergistic benefits. Thus, we crossbred Apoe -/- with human apoprotein A1-transgenic (APOA1 tg/tg) mice, which have elevated cholesterol-effluxing high-density lipoprotein particles, and subjected Apoe -/- and APOA1 tg/tg/Apoe -/- mice to an atherogenic diet to develop advanced plaques. Then mice were either euthanized (baseline) or fed purified standard diet with or without F1394 for 4 more weeks. Plaques of APOA1 tg/tg/Apoe -/- mice fed F1394 showed a 60% reduction of macrophages accompanied by multiple other benefits, such as reduced inflammation and favorable changes in extracellular composition, in comparison with Apoe -/- baseline mice. In addition, there was no accumulation of cholesterol crystals or signs of toxicity. Overall, these results show that short-term partial ACAT inhibition, coupled to increased cholesterol efflux capacity, favorably remodels atherosclerosis lesions, supporting the potential of these combined therapies in the treatment of advanced atherosclerosis. SIGNIFICANCE STATEMENT: Short-term pharmacological inhibition of acyl-CoA:cholesterol acyltransferase-mediated cholesterol esterification, in combination with increased free cholesterol efflux acceptors, has positive effects in mice by 1) reducing the inflammatory state of the plaque macrophages and 2) favoring compositional changes associated with plaque stabilization. These effects occur without toxicity, showing the potential of these combined therapies in the treatment of advanced atherosclerosis.


Assuntos
Acetil-CoA C-Acetiltransferase/antagonistas & inibidores , Apolipoproteína A-I/genética , Apolipoproteínas E/genética , Aterosclerose/terapia , Cicloexanos/administração & dosagem , Dioxanos/administração & dosagem , Animais , Aterosclerose/genética , Cruzamento , Cicloexanos/farmacologia , Suplementos Nutricionais , Dioxanos/farmacologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos/efeitos dos fármacos , Humanos , Lipoproteínas HDL/sangue , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Resultado do Tratamento
7.
J Lipid Res ; 61(11): 1491-1503, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32963037

RESUMO

Atherosclerosis is characterized by the pathological accumulation of cholesterol-laden macrophages in the arterial wall. Atherosclerosis is also the main underlying cause of CVDs, and its development is largely driven by elevated plasma cholesterol. Strong epidemiological data find an inverse association between plasma ß-carotene with atherosclerosis, and we recently showed that ß-carotene oxygenase 1 (BCO1) activity, responsible for ß-carotene cleavage to vitamin A, is associated with reduced plasma cholesterol in humans and mice. In this study, we explore whether intact ß-carotene or vitamin A affects atherosclerosis progression in the atheroprone LDLR-deficient mice. Compared with control-fed Ldlr-/- mice, ß-carotene-supplemented mice showed reduced atherosclerotic lesion size at the level of the aortic root and reduced plasma cholesterol levels. These changes were absent in Ldlr-/- /Bco1-/- mice despite accumulating ß-carotene in plasma and atherosclerotic lesions. We discarded the implication of myeloid BCO1 in the development of atherosclerosis by performing bone marrow transplant experiments. Lipid production assays found that retinoic acid, the active form of vitamin A, reduced the secretion of newly synthetized triglyceride and cholesteryl ester in cell culture and mice. Overall, our findings provide insights into the role of BCO1 activity and vitamin A in atherosclerosis progression through the regulation of hepatic lipid metabolism.


Assuntos
Aterosclerose/metabolismo , Lipídeos/química , Fígado/química , Vitamina A/metabolismo , beta Caroteno/metabolismo , Animais , Aterosclerose/patologia , Células Cultivadas , Feminino , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/deficiência , Receptores de LDL/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/deficiência , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo
8.
J Nutr ; 150(8): 2023-2030, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32433733

RESUMO

BACKGROUND: Plasma cholesterol is one of the strongest risk factors associated with the development of atherosclerotic cardiovascular disease (ASCVD) and myocardial infarction. Human studies suggest that elevated plasma ß-carotene is associated with reductions in circulating cholesterol and the risk of myocardial infarction. The molecular mechanisms underlying these observations are unknown. OBJECTIVE: The objective of this study was to determine the impact of dietary ß-carotene and the activity of ß-carotene oxygenase 1 (BCO1), which is the enzyme responsible for the conversion of ß-carotene to vitamin A, on circulating cholesterol concentration. METHODS: In our preclinical study, we compared the effects of a 10-d intervention with a diet containing 50 mg/kg of ß-carotene on plasma cholesterol in 5-wk-old male and female C57 Black 6 wild-type and congenic BCO1-deficient mice. In our clinical study, we aimed to determine whether 5 common small nucleotide polymorphisms located in the BCO1 locus affected serum cholesterol concentrations in a population of young Mexican adults from the Universities of San Luis Potosí and Illinois: A Multidisciplinary Investigation on Genetics, Obesity, and Social-Environment (UP AMIGOS) cohort. RESULTS: Upon ß-carotene feeding, Bco1-/- mice accumulated >20-fold greater plasma ß-carotene and had ∼30 mg/dL increased circulating total cholesterol (P < 0.01) and non-HDL cholesterol (P < 0.01) than wild-type congenic mice. Our results in the UP AMIGOS cohort show that the rs6564851 allele of BCO1, which has been linked to BCO1 enzymatic activity, was associated with a reduction in 10 mg/dL total cholesterol concentrations (P = 0.009) when adjusted for vitamin A and carotenoid intakes. Non-HDL-cholesterol concentration was also reduced by 10 mg/dL when the data were adjusted for vitamin A and total carotenoid intakes (P = 0.002), or vitamin A and ß-carotene intakes (P = 0.002). CONCLUSIONS: Overall, our results in mice and young adults show that BCO1 activity impacts circulating cholesterol concentration, linking vitamin A formation with the risk of developing ASCVD.


Assuntos
Colesterol/sangue , Dioxigenases/metabolismo , beta Caroteno/administração & dosagem , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Adolescente , Animais , Colesterol/metabolismo , Dioxigenases/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , beta Caroteno/farmacologia , beta-Caroteno 15,15'-Mono-Oxigenase/genética
9.
Circ Res ; 122(4): 568-582, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29301854

RESUMO

RATIONALE: Genome-wide association studies identified single-nucleotide polymorphisms near the SORT1 locus strongly associated with decreased plasma LDL-C (low-density lipoprotein cholesterol) levels and protection from atherosclerotic cardiovascular disease and myocardial infarction. The minor allele of the causal SORT1 single-nucleotide polymorphism locus creates a putative C/EBPα (CCAAT/enhancer-binding protein α)-binding site in the SORT1 promoter, thereby increasing in homozygotes sortilin expression by 12-fold in liver, which is rich in this transcription factor. Our previous studies in mice have showed reductions in plasma LDL-C and its principal protein component, apoB (apolipoprotein B) with increased SORT1 expression, and in vitro studies suggested that sortilin promoted the presecretory lysosomal degradation of apoB associated with the LDL precursor, VLDL (very-low-density lipoprotein). OBJECTIVE: To determine directly that SORT1 overexpression results in apoB degradation and to identify the mechanisms by which this reduces apoB and VLDL secretion by the liver, thereby contributing to understanding the clinical phenotype of lower LDL-C levels. METHODS AND RESULTS: Pulse-chase studies directly established that SORT1 overexpression results in apoB degradation. As noted above, previous work implicated a role for lysosomes in this degradation. Through in vitro and in vivo studies, we now demonstrate that the sortilin-mediated route of apoB to lysosomes is unconventional and intersects with autophagy. Increased expression of sortilin diverts more apoB away from secretion, with both proteins trafficking to the endosomal compartment in vesicles that fuse with autophagosomes to form amphisomes. The amphisomes then merge with lysosomes. Furthermore, we show that sortilin itself is a regulator of autophagy and that its activity is scaled to the level of apoB synthesis. CONCLUSIONS: These results strongly suggest that an unconventional lysosomal targeting process dependent on autophagy degrades apoB that was diverted from the secretory pathway by sortilin and provides a mechanism contributing to the reduced LDL-C found in individuals with SORT1 overexpression.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apolipoproteína B-100/metabolismo , Autofagia , Proteólise , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Hepatócitos/metabolismo , Humanos , Camundongos , Ratos , Via Secretória
10.
Curr Opin Lipidol ; 30(5): 401-408, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31361625

RESUMO

PURPOSE OF REVIEW: Monocytes and macrophages are key players in the pathogenesis of atherosclerosis and dictate atherogenesis growth and stability. The heterogeneous nature of myeloid cells concerning their metabolic and phenotypic function is increasingly appreciated. This review summarizes the recent monocyte and macrophage literature and highlights how differing subsets contribute to atherogenesis. RECENT FINDINGS: Monocytes are short-lived cells generated in the bone marrow and released to circulation where they can produce inflammatory cytokines and, importantly, differentiate into long-lived macrophages. In the context of cardiovascular disease, a myriad of subtypes, exist with each differentially contributing to plaque development. Herein we describe recent novel characterizations of monocyte and macrophage subtypes and summarize the recent literature on mediators of myelopoiesis. SUMMARY: An increased understanding of monocyte and macrophage phenotype and their molecular regulators is likely to translate to the development of new therapeutic targets to either stem the growth of existing plaques or promote plaque stabilization.


Assuntos
Aterosclerose/imunologia , Macrófagos/citologia , Monócitos/citologia , Placa Aterosclerótica/imunologia , Aterosclerose/genética , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Citocinas/metabolismo , Humanos , Macrófagos/imunologia , Monócitos/imunologia , Mielopoese/genética , Placa Aterosclerótica/genética
11.
Cell Physiol Biochem ; 46(1): 187-202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29587291

RESUMO

BACKGROUND/AIMS: All-trans retinoic acid (ATRA) has protective effects against obesity and metabolic syndrome. We here aimed to gain further insight into the interaction of ATRA with skeletal muscle metabolism and secretory activity as important players in metabolic health. METHODS: Cultured murine C2C12 myocytes were used to study direct effects of ATRA on cellular fatty acid oxidation (FAO) rate (using radioactively-labelled palmitate), glucose uptake (using radioactively-labelled 2-deoxy-D-glucose), triacylglycerol levels (by an enzymatic method), and the expression of genes related to FAO and glucose utilization (by RT-real time PCR). We also studied selected myokine production (using ELISA and immunohistochemistry) in ATRA-treated myocytes and intact mice. RESULTS: Exposure of C2C12 myocytes to ATRA led to increased fatty acid consumption and decreased cellular triacylglycerol levels without affecting glucose uptake, and induced the expression of the myokine irisin at the mRNA and secreted protein level in a dose-response manner. ATRA stimulatory effects on FAO-related genes and the Fndc5 gene (encoding irisin) were reproduced by agonists of peroxisome proliferator-activated receptor ß/δ and retinoid X receptors, but not of retinoic acid receptors, and were partially blocked by an AMP-dependent protein kinase inhibitor. Circulating irisin levels were increased by 5-fold in ATRA-treated mice, linked to increased Fndc5 transcription in liver and adipose tissues, rather than skeletal muscle. Immunohistochemistry analysis of FNDC5 suggested that ATRA treatment enhances the release of FNDC5/irisin from skeletal muscle and the liver and its accumulation in interscapular brown and inguinal white adipose depots. CONCLUSION: These results provide new mechanistic insights on how ATRA globally stimulates FAO and enhances irisin secretion, thereby contributing to leaning effects and improved metabolic status.


Assuntos
Fibronectinas/metabolismo , Tretinoína/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fibronectinas/sangue , Fibronectinas/genética , Glucose/metabolismo , Interleucina-6/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , PPAR delta/agonistas , PPAR delta/metabolismo , PPAR beta/agonistas , PPAR beta/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo , Triglicerídeos/metabolismo
12.
J Lipid Res ; 57(9): 1684-95, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27389691

RESUMO

Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a ß-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that ß-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals.


Assuntos
Carotenoides/metabolismo , Colesterol/sangue , Metabolismo dos Lipídeos , Lipídeos/sangue , Transcriptoma/genética , Animais , Colesterol/genética , Dieta , Modelos Animais de Doenças , Metabolismo Energético/genética , Humanos , Lipídeos/genética , Lipólise/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Luteína/administração & dosagem , Luteína/sangue , Metabolismo/genética , Camundongos , Triglicerídeos/sangue , Triglicerídeos/genética , Zeaxantinas/administração & dosagem , beta Caroteno/administração & dosagem , beta Caroteno/sangue
13.
J Biol Chem ; 290(35): 21568-79, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26139608

RESUMO

Recent evidence suggests an important role for outer retinal cells in the pathogenesis of diabetic retinopathy (DR). Here we investigated the effect of the visual cycle inhibitor retinylamine (Ret-NH2) on the development of early DR lesions. Wild-type (WT) C57BL/6J mice (male, 2 months old when diabetes was induced) were made diabetic with streptozotocin, and some were given Ret-NH2 once per week. Lecithin-retinol acyltransferase (LRAT)-deficient mice and P23H mutant mice were similarly studied. Mice were euthanized after 2 (WT and Lrat(-/-)) and 8 months (WT) of study to assess vascular histopathology, accumulation of albumin, visual function, and biochemical and physiological abnormalities in the retina. Non-retinal effects of Ret-NH2 were examined in leukocytes treated in vivo. Superoxide generation and expression of inflammatory proteins were significantly increased in retinas of mice diabetic for 2 or 8 months, and the number of degenerate retinal capillaries and accumulation of albumin in neural retina were significantly increased in mice diabetic for 8 months compared with nondiabetic controls. Administration of Ret-NH2 once per week inhibited capillary degeneration and accumulation of albumin in the neural retina, significantly reducing diabetes-induced retinal superoxide and expression of inflammatory proteins. Superoxide generation also was suppressed in Lrat(-/-) diabetic mice. Leukocytes isolated from diabetic mice treated with Ret-NH2 caused significantly less cytotoxicity to retinal endothelial cells ex vivo than did leukocytes from control diabetics. Administration of Ret-NH2 once per week significantly inhibited the pathogenesis of lesions characteristic of early DR in diabetic mice. The visual cycle constitutes a novel target for inhibition of DR.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Diterpenos/uso terapêutico , Aciltransferases/deficiência , Aciltransferases/metabolismo , Animais , Separação Celular , Retinopatia Diabética/sangue , Retinopatia Diabética/patologia , Retinopatia Diabética/fisiopatologia , Diterpenos/administração & dosagem , Diterpenos/química , Diterpenos/farmacologia , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Glucose/metabolismo , Inflamação/patologia , Leucócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiopatologia , Superóxidos/metabolismo
14.
Hum Mol Genet ; 23(20): 5402-17, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24852372

RESUMO

Vitamin A must be adequately distributed within the body to maintain the functions of retinoids in the periphery and chromophore production in the eyes. Blood transport of the lipophilic vitamin is mediated by the retinol-binding protein, RBP4. Biochemical evidence suggests that cellular uptake of vitamin A from RBP4 is facilitated by a membrane receptor. This receptor, identified as the Stimulated by retinoic acid gene 6 (Stra6) gene product, is highly expressed in epithelia that constitute blood-tissue barriers. Here we established a Stra6 knockout mouse model to analyze the metabolic basis of vitamin A homeostasis in peripheral tissues. These mice were viable when bred on diets replete in vitamin A, but evidenced markedly reduced levels of ocular retinoids. Ophthalmic imaging and histology revealed malformations in the choroid and retinal pigmented epithelium, early cone photoreceptor cell death, and reduced lengths of rod outer segments. Similar to the blood-retina barrier in the RPE, vitamin A transport through the blood-cerebrospinal fluid barrier in the brain's choroid plexus was impaired. Notably, treatment with pharmacological doses of vitamin A restored vitamin A transport across these barriers and rescued the vision of Stra6(-/-) mice. Furthermore, under conditions mimicking vitamin A excess and deficiency, our analyses revealed that STRA6-mediated vitamin A uptake is a regulated process mandatory for ocular vitamin A uptake when RBP4 constitutes the only transport mode in vitamin A deficiency. These findings identifying STRA6 as a bona fide vitamin A transporter have important implications for disease states associated with impaired blood vitamin A homeostasis.


Assuntos
Olho/metabolismo , Olho/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Vitamina A/farmacocinética , Animais , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Olho/ultraestrutura , Homeostase , Camundongos , Camundongos Knockout , Mutação , Transporte Proteico , Retinoides/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Vitamina A/uso terapêutico , Deficiência de Vitamina A/dietoterapia , Deficiência de Vitamina A/genética
15.
FASEB J ; 28(10): 4457-69, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25002123

RESUMO

The critical role of retinoids (vitamin A and its derivatives) for vision, reproduction, and survival has been well established. Vitamin A is produced from dietary carotenoids such as ß-carotene by centric cleavage via the enzyme BCO1. The biochemical and molecular identification of a second structurally related ß-carotene metabolizing enzyme, BCO2, has led to a prolonged debate about its relevance in vitamin A biology. While BCO1 cleaves provitamin A carotenoids, BCO2 is more promiscuous and also metabolizes nonprovitamin A carotenoids such as zeaxanthin into long-chain apo-carotenoids. Herein we demonstrate, in cell lines, that human BCO2 is associated with the inner mitochondrial membrane. Different human BCO2 isoforms possess cleavable N-terminal leader sequences critical for mitochondrial import. Subfractionation of murine hepatic mitochondria confirmed the localization of BCO2 to the inner mitochondrial membrane. Studies in BCO2-knockout mice revealed that zeaxanthin accumulates in the inner mitochondrial membrane; in contrast, ß-carotene is retained predominantly in the cytoplasm. Thus, we provide evidence for a compartmentalization of carotenoid metabolism that prevents competition between BCO1 and BCO2 for the provitamin and the production of noncanonical ß-carotene metabolites.


Assuntos
Citoplasma/metabolismo , Membranas Mitocondriais/metabolismo , Zeaxantinas/metabolismo , beta Caroteno/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Animais , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/metabolismo , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , beta-Caroteno 15,15'-Mono-Oxigenase/genética
16.
J Biol Chem ; 288(13): 9017-27, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23393141

RESUMO

Low dietary intake of ß-carotene is associated with chronic disease and vitamin A deficiency. ß-Carotene is converted to vitamin A in the intestine by the enzyme ß-carotene-15,15'-monoxygenase (BCMO1) to support vision, reproduction, immune function, and cell differentiation. Considerable variability for this key step in vitamin A metabolism, as reported in the human population, could be related to genetics and individual vitamin A status, but it is unclear how these factors influence ß-carotene metabolism and vitamin A homeostasis. Here we show that the intestine-specific transcription factor ISX binds to the Bcmo1 promoter. Moreover, upon induction by the ß-carotene derivative retinoic acid, this ISX binding decreased expression of a luciferase reporter gene in human colonic CaCo-2 cells indicating that ISX acts as a transcriptional repressor of BCMO1 expression. Mice deficient for this transcription factor displayed increased intestinal BCMO1 expression and produced significantly higher amounts of vitamin A from supplemental ß-carotene. The ISX binding site in the human BCMO1 promoter contains a common single nucleotide polymorphism that is associated with decreased conversion rates and increased fasting blood levels of ß-carotene. Thus, our study establishes ISX as a critical regulator of vitamin A production and provides a mechanistic explanation for how both genetics and diet can affect this process.


Assuntos
Dieta , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Vitamina A/química , Ração Animal , Animais , Células CACO-2 , Cromatografia Líquida de Alta Pressão/métodos , Clonagem Molecular , DNA/metabolismo , DNA Complementar/metabolismo , Feminino , Regulação da Expressão Gênica , Heterozigoto , Homeostase , Humanos , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Ligação Proteica , Tretinoína/metabolismo , Vitamina A/metabolismo , beta Caroteno/metabolismo
17.
J Biol Chem ; 288(47): 34081-34096, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24106281

RESUMO

Mammalian genomes encode two provitamin A-converting enzymes as follows: the ß-carotene-15,15'-oxygenase (BCO1) and the ß-carotene-9',10'-oxygenase (BCO2). Symmetric cleavage by BCO1 yields retinoids (ß-15'-apocarotenoids, C20), whereas eccentric cleavage by BCO2 produces long-chain (>C20) apocarotenoids. Here, we used genetic and biochemical approaches to clarify the contribution of these enzymes to provitamin A metabolism. We subjected wild type, Bco1(-/-), Bco2(-/-), and Bco1(-/-)Bco2(-/-) double knock-out mice to a controlled diet providing ß-carotene as the sole source for apocarotenoid production. This study revealed that BCO1 is critical for retinoid homeostasis. Genetic disruption of BCO1 resulted in ß-carotene accumulation and vitamin A deficiency accompanied by a BCO2-dependent production of minor amounts of ß-apo-10'-carotenol (APO10ol). We found that APO10ol can be esterified and transported by the same proteins as vitamin A but with a lower affinity and slower reaction kinetics. In wild type mice, APO10ol was converted to retinoids by BCO1. We also show that a stepwise cleavage by BCO2 and BCO1 with APO10ol as an intermediate could provide a mechanism to tailor asymmetric carotenoids such as ß-cryptoxanthin for vitamin A production. In conclusion, our study provides evidence that mammals employ both carotenoid oxygenases to synthesize retinoids from provitamin A carotenoids.


Assuntos
Carotenoides/metabolismo , Dioxigenases/metabolismo , Vitamina A/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Carotenoides/genética , Criptoxantinas , Dioxigenases/genética , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , Vitamina A/genética , Deficiência de Vitamina A/enzimologia , Deficiência de Vitamina A/genética , Xantofilas/genética , Xantofilas/metabolismo , beta Caroteno/genética , beta Caroteno/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/genética
18.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36945561

RESUMO

ß-carotene oxygenase 1 (BCO1) catalyzes the cleavage of ß-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary ß-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that ß-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of ß-carotene on atherosclerosis resolution. To explore the direct implication of dietary ß-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that ß-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of ß-carotene on atherosclerosis resolution. Our data highlight the potential of ß-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.

19.
Elife ; 122024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319073

RESUMO

ß-Carotene oxygenase 1 (BCO1) catalyzes the cleavage of ß-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary ß-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that ß-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of ß-carotene on atherosclerosis resolution. To explore the direct implication of dietary ß-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that ß-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of ß-carotene on atherosclerosis resolution. Our data highlight the potential of ß-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , beta Caroteno , Camundongos , Humanos , Animais , beta Caroteno/farmacologia , beta Caroteno/metabolismo , Vitamina A/metabolismo , Fígado/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Lipídeos
20.
J Biol Chem ; 287(29): 24216-27, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22637576

RESUMO

Vitamin A (all-trans-retinol) must be adequately distributed within the mammalian body to produce visual chromophore in the eyes and all-trans-retinoic acid in other tissues. Vitamin A is transported in the blood bound to retinol-binding protein (holo-RBP), and its target cells express an RBP receptor encoded by the Stra6 (stimulated by retinoic acid 6) gene. Here we show in mice that cellular uptake of vitamin A from holo-RBP depends on functional coupling of STRA6 with intracellular lecithin:retinol acyltransferase (LRAT). Thus, vitamin A uptake from recombinant holo-RBP exhibited by wild type mice was impaired in Lrat(-/-) mice. We further provide evidence that vitamin A uptake is regulated by all-trans-retinoic acid in non-ocular tissues of mice. When in excess, vitamin A was rapidly taken up and converted to its inert ester form in peripheral tissues, such as lung, whereas in vitamin A deficiency, ocular retinoid uptake was favored. Finally, we show that the drug fenretinide, used clinically to presumably lower blood RBP levels and thus decrease circulating retinol, targets the functional coupling of STRA6 and LRAT to increase cellular vitamin A uptake in peripheral tissues. These studies provide mechanistic insights into how vitamin A is distributed to peripheral tissues in a regulated manner and identify LRAT as a critical component of this process.


Assuntos
Aciltransferases/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Vitamina A/metabolismo , Aciltransferases/genética , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Células Hep G2 , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteínas de Ligação ao Retinol/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA