Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 35(25): 8246-8256, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31132272

RESUMO

CeO2 nanoparticle-decorated ?-MnO2 nanotubes (NTs) were prepared and tested for elemental mercury (Hg0) vapor removal in simulated natural gas mixtures at ambient conditions. The composition which had the largest surface area and a relative Ce/Mn atomic weight ratio of around 35% exhibited a maximum Hg0 uptake capacity exceeding 20 mg?g?1 (2 wt %), as determined from measurements of mercury breakthrough which corresponded to 99.5% Hg0 removal efficiency over 96 h of exposure. This represents a significant improvement in the activity of pure metal oxides. Most importantly, the composite nanosorbent was repeatedly regenerated at 350 ?C and retained the 0.5% Hg0 breakthrough threshold. It was projected to be able to sustain 20 regeneration cycles, with the presence of acid gases, CO2, and H2S, not affecting its performance. This result is particularly important, considering that pure CeO2 manifests rather poor activity for Hg0 removal at ambient conditions, and hence, a synergistic effect in the composite nanomaterial was observed. This possibly results from the addition of facile oxygen vacancy formation at ?-MnO2 NTs and the increased amount of surface-adsorbed oxygen species.

2.
Langmuir ; 34(8): 2663-2673, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29397744

RESUMO

This work reports the synthesis of heterostructured copper-ceria and iron-ceria nanorods and the role of their morphology, redox, and acid properties in catalytic diesel soot combustion. Microscopy images show the presence of nanocrystalline CuO (9.5 ± 0.5 nm) and Fe2O3 (7.3 ± 0.5 nm) particles on the surface of CeO2 nanorods (diameter is 8.5 ± 2 nm and length within 16-89 nm). In addition to diffraction peaks of CuO and Fe2O3 nanocrystallites, X-ray diffraction (XRD) studies reveal doping of Cu2+ and Fe3+ ions into the fluorite lattice of CeO2, hence abundant oxygen vacancies in the Cu/CeO2 and Fe/CeO2 nanorods, as evidenced by Raman spectroscopy studies. XRD and Raman spectroscopy studies further show substantial perturbations in Cu/CeO2 rods, resulting in an improved reducibility of bulk cerium oxide and formation of abundant Lewis acid sites, as investigated by H2-temperature-programmed reduction and pyridine-adsorbed Fourier transform infrared studies, respectively. The Cu/CeO2 rods catalyze the soot oxidation reaction at the lowest temperatures under both tight contact (Cu/CeO2; T50 = 358 °C, temperature at which 50% soot conversion is achieved, followed by Fe/CeO2; T50 = 368 °C and CeO2; T50 = 433 °C) and loose contact conditions (Cu/CeO2; T50 = 419 °C and Fe/CeO2; T50 = 435 °C). A possible mechanism based on the synergetic effect of redox and acid properties of Cu/CeO2 nanorods was proposed: acid sites can activate soot particles to form reactive carbon species, which are oxidized by gaseous oxygen/lattice oxygen activated in the oxygen vacancies (redox sites) of ceria rods.

3.
Langmuir ; 33(8): 1743-1750, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28152307

RESUMO

Understanding the role of nanointerface structures in supported bimetallic nanoparticles is vital for the rational design of novel high-performance catalysts. This study reports the synthesis, characterization, and the catalytic application of Co-Mn oxide nanoparticles supported on CeO2 nanocubes with the specific aim of investigating the effect of nanointerfaces in tuning structure-activity properties. High-resolution transmission electron microscopy analysis reveals the formation of different types of Co-Mn nanoalloys with a range of 6 ± 0.5 to 14 ± 0.5 nm on the surface of CeO2 nanocubes, which are in the range of 15 ± 1.5 to 25 ± 1.5 nm. High concentration of Ce3+ species are found in Co-Mn/CeO2 (23.34%) compared with that in Mn/CeO2 (21.41%), Co/CeO2 (15.63%), and CeO2 (11.06%), as evidenced by X-ray photoelectron spectroscopy (XPS) analysis. Nanoscale electron energy loss spectroscopy analysis in combination with XPS studies shows the transformation of Co2+ to Co3+ and simultaneously Mn4+/3+ to Mn2+. The Co-Mn/CeO2 catalyst exhibits the best performance in solvent-free oxidation of benzylamine (89.7% benzylamine conversion) compared with the Co/CeO2 (29.2% benzylamine conversion) and Mn/CeO2 (82.6% benzylamine conversion) catalysts for 3 h at 120 °C using air as the oxidant. Irrespective of the catalysts employed, a high selectivity toward the dibenzylimine product (97-98%) was found compared with the benzonitrile product (2-3%). The interplay of redox chemistry of Mn and Co at the nanointerface sites between Co-Mn nanoparticles and CeO2 nanocubes as well as the abundant structural defects in cerium oxide plays a key role in the efficiency of the Co-Mn/CeO2 catalyst for the aerobic oxidation of benzylamine.

4.
Langmuir ; 33(40): 10632-10644, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28930461

RESUMO

Hierarchical porous materials are of great interest in various industrial applications because of their potential to overcome the mass transport limitations typically encountered for single-mode porous materials. This report describes the synthesis of a hierarchical trimodal porous silica-based material using a 7.5 molar ratio of a relatively inexpensive nonionic surfactant template, triblock copolymer P123, EO20PO70EO20. The pore size distribution curve shows the presence of three types of pores with average diameters of ∼8, 25, and 89 nm. Electron microscope images confirm the existence of smaller ordered mesopores (first mode), larger ordered mesopores (second mode), and macropores (third mode). Ni nanoparticles dispersed on this trimodal porous silica produce a material that exhibited excellent catalytic performance for the CO2 reforming of CH4. This research provides new insights that will facilitate the development of trimodal porous silica (TMS) materials for a variety of applications. The results demonstrated that the presence of large pores (second and third mode pores) in TMS material increased the number of accessible active Ni sites, which led to the high activity observed for Ni/TMS catalyst.

5.
Langmuir ; 32(9): 2208-15, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26886079

RESUMO

This work investigates the structure-activity properties of CuOx-decorated CeO2 nanocubes with a meticulous scrutiny on the role of the CuOx/CeO2 nanointerface in the catalytic oxidation of diesel soot, a critical environmental problem all over the world. For this, a systematic characterization of the materials has been undertaken using transmission electron microscopy (TEM), transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDS), high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM), scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS), X-ray diffraction (XRD), Raman, N2 adsorption-desorption, and X-ray photoelectron spectroscopy (XPS) techniques. The TEM images show the formation of nanosized CeO2 cubes (∼25 nm) and CuOx nanoparticles (∼8.5 nm). The TEM-EDS elemental mapping images reveal the uniform decoration of CuOx nanoparticles on CeO2 nanocubes. The XPS and Raman studies show that the decoration of CuOx on CeO2 nanocubes leads to improved structural defects, such as higher concentrations of Ce(3+) ions and abundant oxygen vacancies. It was found that CuOx-decorated CeO2 nanocubes efficiently catalyze soot oxidation at a much lower temperature (T50 = 646 K, temperature at which 50% soot conversion is achieved) compared to that of pristine CeO2 nanocubes (T50 = 725 K) under tight contact conditions. Similarly, a huge 91 K difference in the T50 values of CuOx/CeO2 (T50 = 744 K) and pristine CeO2 (T50 = 835 K) was found in the loose-contact soot oxidation studies. The superior catalytic performance of CuOx-decorated CeO2 nanocubes is mainly attributed to the improved redox efficiency of CeO2 at the nanointerface sites of CuOx-CeO2, as evidenced by Ce M5,4 EELS analysis, supported by XRD, Raman, and XPS studies, a clear proof for the role of nanointerfaces in the performance of heterostructured nanocatalysts.

6.
Langmuir ; 31(39): 10922-30, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26073157

RESUMO

p-Type Cu2O/n-type ZnO core/shell photocatalysts has been demonstrated to be an efficient photocatalyst as a result of their interfacial structure tendency to reduce the recombination rate of photogenerated electron-hole pairs. Monodispersed Cu2O nanocubes were synthesized and functioned as the core, on which ZnO nanoparticles were coated as the shells having varying morphologies. The evenly distributed ZnO decoration as well as assembled nanospheres of ZnO were carried out by changing the molar concentration ratio of Zn/Cu. The results indicate that the photocatalytic performance is initially increased, owing to formation of small ZnO nanoparticles and production of efficient p-n junction heterostructures. However, with increasing Zn concentration, the decorated ZnO nanoparticles tend to form large spherical assemblies resulting in decreased photocatalytic activity due to the interparticle recombination between the agglomerated ZnO nanoparticles. Therefore, photocatalytic activity of Cu2O/ZnO heterostructures can be optimized by controlling the assembly and morphology of the ZnO shell.

7.
Mater Sci Eng C Mater Biol Appl ; 96: 286-294, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30606534

RESUMO

Manufacturing nanoparticles with controlled physicochemical properties using environment-friendly routes have potential to open new prospects for a variety of applications. Accordingly, several approaches have been established for manufacturing metal nanoparticles. Many of these approaches entail the use of hazardous chemicals and could be toxic to the environment, and cannot be used readily for biomedical applications. In the present work, we report a single step bio-friendly approach to formulate gold (Au), silver (Ag), and Au-Ag alloy nanoparticles with desired surface corona and composition using isonicotinylhydrazide (INH) as a reducing agent. INH also functioned as a stabilizing agent by enabling a surface corona around the nanoparticles. Remarkably, within a single step INH could also provide a handle in regulating the composition of Au and Ag in bimetallic systems without any additional chemical modification. The physicochemical and surface properties of the different nanoparticles thus obtained have been examined by analytical, spectroscopic and microscopic techniques. Cell cytotoxicity (release of lactate dehydrogenase), cell viability and intracellular reactive oxygen species (ROS) assays confirmed that the Au, Ag, and Au-Ag bimetallic nanoparticles prepared with INH are biocompatible. Finally, the presence of organic surface corona of INH on the nanoparticles was found to impart nanozyme activity and antimycobacterial sensitivity to the nanoparticles.


Assuntos
Ligas/química , Fibroblastos/metabolismo , Ouro/química , Hidrazinas/química , Teste de Materiais , Nanopartículas Metálicas/química , Prata/química , Animais , Células Cultivadas , Fibroblastos/citologia , Camundongos , Oxirredução
8.
ACS Appl Mater Interfaces ; 7(30): 16525-35, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26214855

RESUMO

Understanding the interface-induced effects of heteronanostructured catalysts remains a significant challenge due to their structural complexity, but it is crucial for developing novel applied catalytic materials. This work reports a systematic characterization and catalytic evaluation of MnOx nanoparticle-dispersed CeO2 nanocubes for two important industrial applications, namely, diesel soot oxidation and continuous-flow benzylamine oxidation. The X-ray diffraction and Raman studies reveal an unusual lattice expansion in CeO2 after the addition of MnOx. This interesting observation is due to conversion of smaller sized Ce(4+) (0.097 nm) to larger sized Ce(3+) (0.114 nm) in cerium oxide led by the strong interaction between MnOx and CeO2 at their interface. Another striking observation noticed from transmission electron microscopy, high angle annular dark-field scanning transmission electron microscopy, and electron energy loss spectroscopy studies is that the MnOx species are well-dispersed along the edges of the CeO2 nanocubes. This remarkable decoration leads to an enhanced reducible nature of the cerium oxide at the MnOx/CeO2 interface. It was found that MnOx/CeO2 heteronanostructures efficiently catalyze soot oxidation at lower temperatures (50% soot conversion, T50 ∼660 K) compared with that of bare CeO2 nanocubes (T50 ∼723 K). Importantly, the MnOx/CeO2 heteronanostructures exhibit a noticeable steady performance in the oxidation of benzylamine with a high selectivity of the dibenzylimine product (∼94-98%) compared with that of CeO2 nanocubes (∼69-91%). The existence of a strong synergistic effect at the interface sites between the CeO2 and MnOx components is a key factor for outstanding catalytic efficiency of the MnOx/CeO2 heteronanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA