RESUMO
The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.
Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Testes de Neutralização , SARS-CoV-2/genética , África do SulRESUMO
Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.
Assuntos
Anticorpos Monoclonais , Vacinas contra COVID-19/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Antivirais , COVID-19 , Vacinas contra COVID-19/administração & dosagem , Epitopos , Humanos , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/químicaRESUMO
On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses.
RESUMO
Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.
Assuntos
Vacinas contra COVID-19/imunologia , Vacinas Sintéticas/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Apresentação Cruzada/imunologia , Relação Dose-Resposta Imunológica , Etnicidade , Feminino , Humanos , Imunidade , Imunoglobulina G/imunologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Padrões de Referência , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Resultado do Tratamento , Adulto Jovem , Vacinas de mRNARESUMO
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize microbial metabolites through a semi-invariant T cell receptor (TCR). Major questions remain regarding the extent of human MAIT cell functional and clonal diversity. To address these, we analyzed the single-cell transcriptome and TCR repertoire of blood and liver MAIT cells and developed functional RNA-sequencing, a method to integrate function and TCR clonotype at single-cell resolution. MAIT cell clonal diversity was comparable to conventional memory T cells, with private TCR repertoires shared across matched tissues. Baseline functional diversity was low and largely related to tissue site. MAIT cells showed stimulus-specific transcriptional responses in vitro, with cells positioned along gradients of activation. Clonal identity influenced resting and activated transcriptional profiles but intriguingly was not associated with the capacity to produce IL-17. Overall, MAIT cells show phenotypic and functional diversity according to tissue localization, stimulation environment and clonotype.
Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Células Clonais/metabolismo , Ativação Linfocitária/genética , Análise de Célula ÚnicaRESUMO
A proof-of-concept system is presented for the hyphenation of spatial comprehensive three-dimensional liquid chromatography (3D-LC) to mass spectrometry (MS) detection via a robotic-microfluidic interface. A three-dimensional fractal microflow distributor, incorporating 16 parallel RP monolithic capillary columns arranged in a 4 × 4 configuration, was connected to an X-Y-Z robotic system. This setup facilitated the deposition of successive arrays of microdroplets onto an MS target plate. To minimize carryover during droplet deposition, a strategy was implemented in which the distance between the target plate and the capillary was gradually increased during the deposition process. System-level variation in travel time and subsequent flow rates across parallel columns was assessed and translated in retention alignment based on injection of a protein standard. The successful separation of intact proteins was demonstrated through a parallel 4 × 4 column configuration, applying MALDI-MS detection after microdroplet spotting on an MS target plate. Furthermore, the discussion encompasses high-throughput MS imaging detection within the framework of spatial 3D-LC.
RESUMO
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Assuntos
Neoplasias Hematológicas , Leucemia , Linfoma , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , ApoptoseRESUMO
BACKGROUND: Treating Acute Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL) is difficult due to high relapse rates and drug resistance. Tumorigenesis is largely dependent on disruption of the cell cycle progression. While the role of Cell Division Cycle 27 (CDC27) in the anaphase-promoting complex/cyclosome is well-known, its significance in the pathophysiology of acute leukemia and its potential as a biomarker are less well understood. METHODS AND RESULTS: This case-control study used samples from 100 leukemia patients (50 with ALL and 50 with AML) at Shariati Hospital in Tehran, Iran, along with 50 healthy individuals. The expression of CDC27 was analyzed using quantitative real-time PCR (RQ-PCR). Statistical analysis was done using the nonparametric Mann-Whitney U test. The results showed that AML and ALL patients had significantly higher levels of CDC27 expression compared to the control group. Although a weak correlation between CDC27 expression and hematological parameters was found, there was no significant correlation with sample type, demographics, clinical variables or prognosis. CONCLUSIONS: This study highlights the potential of CDC27 as an oncogene, as well as a possible prognostic and diagnostic marker in acute leukemias. It suggests that CDC27 could be a valuable biomarker or therapeutic target in the treatment of AML and ALL.
Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Feminino , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estudos de Casos e Controles , Pessoa de Meia-Idade , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Adolescente , Prognóstico , Adulto Jovem , Irã (Geográfico) , Regulação Leucêmica da Expressão Gênica , Idoso , Criança , Subunidade Apc3 do Ciclossomo-Complexo Promotor de AnáfaseRESUMO
The development of transition metal-free 2-isocyanobiaryl-based reactions has received much attention due to the widespread presence of phenanthidine frameworks as products in pharmacological chemistry and materials science. This review article focuses on the achievements from 2013 until now in various metal-free catalyzed reactions and discusses challenging mechanisms and features of the transformations.
Assuntos
Metais , Elementos de Transição , Ciclização , FenantridinasRESUMO
This paper focuses on 3D printing using digital light processing (DLP) to create microchannel devices with inner diameters of 100, 200, and 500 µm and cater flow-through applications within the realm of analytical chemistry, in particular high-pressure liquid chromatographic separations. Effects of layer thickness and exposure time on channel dimensions and surface roughness were systematically investigated. Utilizing a commercially accessible 3D printer and acrylate resin formulation, we fabricated 100-500 µm i.d. squared and circular channel designs minimizing average surface roughness (< 20%) by applying a 20-µm layer thickness and exposure times ranging from 1.1 to 0.7 s. Pressure resistance was measured by encasing microdevices in an aluminum chip holder that integrated flat-bottom polyetheretherketon (PEEK) nanoports allowing to establish the micro-to-macro interface to the HPLC instrument. After thermal post-curing and finetuning the clamping force of the chip holder, a maximum pressure resistance of 650 bar (1.5% RSD) was reached (n = 3). A polymer monolithic support structure was successfully synthesized in situ with the confines of a 500 µm i.d. 3D printed microchannel. A proof-of-concept of a reversed-phase chromatographic gradient separation of intact proteins is demonstrated using an aqueous-organic mobile-phase with isopropanol as organic modifier.
RESUMO
Vδ2+ γδT cells are unconventional T cells that can be activated by cytokines without TCR signaling. Adenovirus vaccine vectors activated Vδ2+ γδT cells in an interleukin 18-, TNF-, and type I interferon-dependent manner. This stimulatory capacity was associated with adenovirus vectors of non-species C origin, including the ChAdOx1 vaccine platform.
Assuntos
Interferon Tipo I , Subpopulações de Linfócitos T , Adenoviridae/genética , Citocinas , Interleucina-18 , Receptores de Antígenos de Linfócitos T gama-delta/genéticaRESUMO
Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49-14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08-18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 -a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.
Assuntos
COVID-19/imunologia , COVID-19/mortalidade , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos B/imunologia , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo , Estudos de Coortes , Estado Terminal/mortalidade , Feminino , Humanos , Imunofenotipagem , Influenza Humana/imunologia , Lectinas Tipo C/imunologia , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/imunologia , Gravidade do PacienteRESUMO
Ivermectin (IVM) is an antiparasitic drug that primarily works by the activation of GABAA receptors. The potential pharmacological pathways behind the anti-convulsant effect of IVM haven't yet been identified. In this study, intravenous injection of pentylenetetrazole (PTZ)-induced clonic seizure in mice was investigated in order to assess the possible influence of IVM on clonic seizure threshold (CST). We also look at the function of the Opioidergic and nitrergic pathways in IVM anticonvulsant action on clonic seizure threshold. IVM (0.5, 1, 5, and 10 mg/kg, i.p.) raised the PTZ-induced CST, according to our findings. Furthermore, the ineffective dose of nitric oxide synthase inhibitors (L-NAME 10 mg/kg, i.p.), and (7-NI 30 mg/kg, i.p.) or opioidergic system agonist (morphine 0.25 mg/kg, i.p.) were able to amplify the anticonvulsive action of IVM (0.2 mg/kg, i.p.). Moreover, the anticonvulsant effect of IVM was reversed by an opioid receptor antagonist (naltrexone 1 mg/kg, i.p.). Furthermore, the combination of the ineffective dose of morphine as an opioid receptor agonist with either L-NAME (2 mg/kg, i.p.) or 7-NI (10 mg/kg, i.p.) and with an ineffective dose of IVM (0.2 mg/kg, i.p.) had a significant anticonvulsant effect. Taken together, IVM has anticonvulsant activity against PTZ-induced clonic seizures in mice, which may be mediated at least in part through the interaction of the opioidergic system and the nitric oxide pathway.
Assuntos
Anticonvulsivantes , Pentilenotetrazol , Camundongos , Animais , Pentilenotetrazol/toxicidade , Anticonvulsivantes/efeitos adversos , Ivermectina/efeitos adversos , NG-Nitroarginina Metil Éster/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Morfina/farmacologia , Relação Dose-Resposta a Droga , Óxido Nítrico/metabolismo , Modelos Animais de DoençasRESUMO
Tissue and cell mechanics are crucial factors in maintaining homeostasis and in development, with aberrant mechanics contributing to many diseases. During the epithelial-to-mesenchymal transition (EMT), a highly conserved cellular program in organismal development and cancer metastasis, cells gain the ability to detach from their original location and autonomously migrate. While a great deal of biochemical and biophysical changes at the single-cell level have been revealed, how the physical properties of multicellular assemblies change during EMT, and how this may affect disease progression, is unknown. Here we introduce cell monolayer deformation microscopy (CMDM), a new methodology to measure the planar mechanical properties of cell monolayers by locally applying strain and measuring their resistance to deformation. We employ this new method to characterize epithelial multicellular mechanics at early and late stages of EMT, finding the epithelial monolayers to be relatively compliant, ductile, and mechanically homogeneous. By comparison, the transformed mesenchymal monolayers, while much stiffer, were also more brittle, mechanically heterogeneous, displayed more viscoelastic creep, and showed sharp yield points at significantly lower strains. Here, CMDM measurements identify specific biophysical functional states of EMT and offer insight into how cell aggregates fragment under mechanical stress. This mechanical fingerprinting of multicellular assemblies using new quantitative metrics may also offer new diagnostic applications in healthcare to characterize multicellular mechanical changes in disease.
Assuntos
Transição Epitelial-Mesenquimal , Microscopia , Estresse MecânicoRESUMO
Allogeneic haematopoietic stem cell transplant (HSCT) recipients remain at high risk of adverse outcomes from coronavirus disease 2019 (COVID-19) and emerging variants. The optimal prophylactic vaccine strategy for this cohort is not defined. T cell-mediated immunity is a critical component of graft-versus-tumour effect and in determining vaccine immunogenicity. Using validated anti-spike (S) immunoglobulin G (IgG) and S-specific interferon-gamma enzyme-linked immunospot (IFNγ-ELIspot) assays we analysed response to a two-dose vaccination schedule (either BNT162b2 or ChAdOx1) in 33 HSCT recipients at ≤2 years from transplant, alongside vaccine-matched healthy controls (HCs). After two vaccines, infection-naïve HSCT recipients had a significantly lower rate of seroconversion compared to infection-naïve HCs (25/32 HSCT vs. 39/39 HCs no responders) and had lower S-specific T-cell responses. The HSCT recipients who received BNT162b2 had a higher rate of seroconversion compared to ChAdOx1 (89% vs. 74%) and significantly higher anti-S IgG titres (p = 0.022). S-specific T-cell responses were seen after one vaccine in HCs and HSCT recipients. However, two vaccines enhanced S-specific T-cell responses in HCs but not in the majority of HSCT recipients. These data demonstrate limited immunogenicity of two-dose vaccination strategies in HSCT recipients, bolstering evidence of the need for additional boosters and/or alternative prophylactic measures in this group.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Transplante de Células-Tronco Hematopoéticas , Fatores Etários , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , Vacina BNT162/uso terapêutico , Transplante de Medula Óssea/efeitos adversos , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , Vacinas contra COVID-19/uso terapêutico , ChAdOx1 nCoV-19/imunologia , ChAdOx1 nCoV-19/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Soroconversão , Transplante Homólogo/efeitos adversos , Vacinação/efeitos adversosRESUMO
T-cell responses to SARS-CoV-2 following infection and vaccination are less characterized than antibody responses, due to a more complex experimental pathway. We measured T-cell responses in 108 healthcare workers (HCWs) using the commercialized Oxford Immunotec T-SPOT Discovery SARS-CoV-2 assay service (OI T-SPOT) and the PITCH ELISpot protocol established for academic research settings. Both assays detected T-cell responses to SARS-CoV-2 spike, membrane, and nucleocapsid proteins. Responses were significantly lower when reported by OI T-SPOT than by PITCH ELISpot. Four weeks after two doses of either Pfizer/BioNTech BNT162b or ChAdOx1 nCoV-19 AZD1222 vaccine, the responder rate was 63% for OI T-SPOT Panels 1 + 2 (peptides representing SARS-CoV-2 spike protein excluding regions present in seasonal coronaviruses), 69% for OI T-SPOT Panel 14 (peptides representing the entire SARS-CoV-2 spike), and 94% for the PITCH ELISpot total spike. The two OI T-SPOT panels correlated strongly with each other showing that either readout quantifies spike-specific T-cell responses, although the correlation between the OI T-SPOT panels and the PITCH ELISpot total spike was moderate. The standardization, relative scalability, and longer interval between blood acquisition and processing are advantages of the commercial OI T-SPOT assay. However, the OI T-SPOT assay measures T-cell responses at a significantly lower magnitude compared to the PITCH ELISpot assay, detecting T-cell responses in a lower proportion of vaccinees. This has implications for the reporting of low-level T-cell responses that may be observed in patient populations and for the assessment of T-cell durability after vaccination.
Assuntos
Vacina BNT162 , COVID-19 , ChAdOx1 nCoV-19 , Linfócitos T , Anticorpos Antivirais , Vacina BNT162/imunologia , COVID-19/prevenção & controle , ChAdOx1 nCoV-19/imunologia , Pessoal de Saúde , Humanos , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Linfócitos T/imunologia , VacinaçãoRESUMO
BACKGROUND: Retinoic acid (RA) is a synthetic vitamin derivative. It exerts toxic and teratogenic effects on the development of embryonic organs in dose- and time-dependent manners in mice. Curcumin is a compound obtained from rhizomes of turmeric (Curcuma longa) and has protective effects on teratogenic agents. The current study examined the effects of curcumin on embryos treated with RA. METHODS: A total of 24 female NMRI mice (8-week-old pregnant mice) were investigated in the current study. All of them were treated for 10 days during days 15 to 50 of pregnancy. In the first group, the animals were fed with normal diets (control); in the second group, with 60 mg/kg all- trans RA; in the third group, with 10 mg/kg curcumin; and in the fourth group, with RA and curcumin in their diets. The animals were killed by cervical dislocation at the 18th day of pregnancy and embryos were separated from the uteruses. The embryo weight and crown rump (CR) length were measured, and the SPSS software was used to analyze data. RESULTS: There was a significant increase in the lengths of CR and weights of embryos after using curcumin, but RA had no effect on the length of CR and weight of embryos at a dose of 60 mg/kg. Morphometric assay of liver tissue was performed, and data analysis indicated that there were significant differences between groups in terms of morphometric parameters of liver tissue. Therefore, RA increased the cell number and sinusoid diameter and decreased the cell areas in the embryonic liver tissue. However, curcumin decreased these side effects of RA on the embryonic liver tissue. CONCLUSION: The results indicated that curcumin could decrease the toxic and teratogenic effects of RA in mouse embryos.
Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Teratogênicos/farmacologia , Tretinoína/farmacologia , Animais , Feminino , Camundongos , GravidezRESUMO
Targeting oncogenic signaling pathways by small molecules has emerged as a potential treatment strategy for cancer. reactivation of p53 and induction of tumor cell apoptosis (RITA) is a promising anticancer small molecule that reactivates p53 and induces exclusive apoptosis in tumor cells. Less well appreciated was the possible effect of small molecule RITA on p53-null leukemia cells. In this study, we demonstrated that RITA has potent antileukemic properties against p53-null chronic myeloid leukemia (CML)-derived K562 cells. RITA triggered apoptosis through caspase-9 and caspase-3 activation and poly (ADP-ribose) polymerase cleavage. RITA decreased STAT5 tyrosine phosphorylation, although it did not inhibit phosphorylation of the direct BCR-ABL substrate CrkL. Real-time PCR analysis showed that RITA downregulates antiapoptotic STAT5 target genes Bcl-xL and MCL-1. The downregulation of nuclear factor-κB (NF-κB), as evidenced by inhibition of IκB-α phosphorylation and its degradation, was associated with inhibition of Akt phosphorylation in RITA-treated cells. Furthermore, consistent with the decrease of mRNA levels, protein levels of the nuclear factor-κB-regulated antiapoptotic (cIAP1, XIAP, and Bcl-2) and proliferative (c-Myc) genes were downregulated by RITA in K562 cells. In conclusion, the ability of RITA to inhibit prosurvival signaling pathways in CML cells suggests a potential application of RITA in CML therapeutic protocols.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Furanos/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Regulação para Baixo/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismoRESUMO
Staphylococcus aureus is a gram-positive and opportunistic pathogen that is one of the most common causes of nosocomial infections; therefore, its rapid diagnosis is important and valuable. Today, the use of nanoparticles is expanding due to their unique properties. The purpose of the present study is the determination of S. aureus by a colorimetric method based on gold nanoparticles (AuNPs). Firstly, S. aureus was cultured on both LB media (broth and agar) and their chromosomal DNA was extracted. Afterwards, primers and biosensor were designed based on Protein A sequence data in the gene bank. PCR assay was performed under optimal conditions and the PCR product was electrophoresed on 2-percent agarose gel. The synthesized biosensors were conjugated with AuNPs and, eventually, a single-stranded genome was added to the conjugated AuNPs and hybridization was performed. The results were evaluated based on color change detected by the naked eye, optical spectrophotometry, and transient electron microscopy. Finally, the sensitivity and specificity of the AuNP-biosensor were determined. The results of the present study showed a 390 bp band on the agarose electrophoresis gel, which confirmed the presence of Protein A genes on the chromosome of the bacteria. The PCR and colorimetric methods were compared with each other. The sensitivity of the PCR and colorimetric methods were 30â¯ng⯵L-1 and 10â¯ng⯵L-1, respectively. The limit of detection (LOD) equaling 8.73â¯ng⯵L-1 was determined and the specificity of the method was confirmed by the DNA of other bacteria. According to the results, the present method is rapid and sensitive in detecting S. aureus.
Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas Metálicas/química , Staphylococcus aureus/isolamento & purificação , Difusão Dinâmica da Luz , Limite de Detecção , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta , Staphylococcus aureus/genéticaRESUMO
BACKGROUND: Although direct-acting antivirals can achieve sustained virological response rates greater than 90% in Hepatitis C Virus (HCV) infected persons, at present the majority of HCV-infected individuals remain undiagnosed and therefore untreated. While there are a wide range of HCV serological tests available, there is a lack of formal assessment of their diagnostic performance. We undertook a systematic review and meta-analysis to evaluate he diagnostic accuracy of available rapid diagnostic tests (RDT) and laboratory based EIA assays in detecting antibodies to HCV. METHODS: We used the PRISMA checklist and Cochrane guidance to develop our search protocol. The search strategy was registered in PROSPERO (CRD42015023567). The search focused on hepatitis C, diagnostic tests, and diagnostic accuracy within eight databases (MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, Science Citation Index Expanded, Conference Proceedings Citation Index-Science, SCOPUS, Literatura Latino-Americana e do Caribe em Ciências da Saúde and WHO Global Index Medicus. Studies were included if they evaluated an assay to determine the sensitivity and specificity of HCV antibody (HCV Ab) in humans. Two reviewers independently extracted data and performed a quality assessment of the studies using the QUADAS tool. We pooled test estimates using the DerSimonian-Laird method, by using the software R and RevMan. 5.3. RESULTS: A total of 52 studies were identified that included 52,673 unique test measurements. Based on five studies, the pooled sensitivity and specificity of HCV Ab rapid diagnostic tests (RDTs) were 98% (95% CI 98-100%) and 100% (95% CI 100-100%) compared to an enzyme immunoassay (EIA) reference standard. High HCV Ab RDTs sensitivity and specificity were observed across screening populations (general population, high risk populations, and hospital patients) using different reference standards (EIA, nucleic acid testing, immunoblot). There were insufficient studies to undertake subanalyses based on HIV co-infection. Oral HCV Ab RDTs also had excellent sensitivity and specificity compared to blood reference tests, respectively at 94% (95% CI 93-96%) and 100% (95% CI 100-100%). Among studies that assessed individual oral RDTs, the eight studies revealed that OraQuick ADVANCE® had a slightly higher sensitivity (98%, 95% CI 97-98%) compared to the other oral brands (pooled sensitivity: 88%, 95% CI 84-92%). CONCLUSIONS: RDTs, including oral tests, have excellent sensitivity and specificity compared to laboratory-based methods for HCV antibody detection across a wide range of settings. Oral HCV Ab RDTs had good sensitivity and specificity compared to blood reference standards.