Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Microbiol ; : 1-20, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102871

RESUMO

Lately, antimicrobial resistance (AMR) is increasing at an exponential rate making it important to search alternatives to antibiotics in order to combat multi-drug resistant (MDR) bacterial infections. Out of the several antibacterial and antibiofilm strategies being tested, antimicrobial peptides (AMPs) have shown to give better hopes in terms of a long-lasting solution to the problem. To select a desired AMP, it is important to make right use of available tools and databases that aid in identification, classification, and analysis of the physiochemical properties of AMPs. To identify the targets of these AMPs, it becomes crucial to understand their mode-of-action. AMPs can also be used in combination with other antibacterial and antibiofilm agents so as to achieve enhanced efficacy against bacteria and their biofilms. Due to concerns regarding toxicity, stability, and bioavailability, strategizing drug formulation at an early-stage becomes crucial. Although there are few concerns regarding development of bacterial resistance to AMPs, the evolution of resistance to AMPs occurs extremely slowly. This comprehensive review gives a deep insight into the selection of the right AMP, deciding the right target and combination strategy along with the type of formulation needed, and the possible resistance that bacteria can develop to these AMPs.

2.
Biotechnol Lett ; 44(7): 879-900, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35672528

RESUMO

PURPOSE: Hepatocellular carcinoma (HCC) is the uncontrolled growth of hepatocytes which results in nearly 5 million deaths worldwide. Specific strategies have been developed to treat HCC, including surgery, chemotherapy and radiotherapy. But, the effective disease dealing requires synergistic collaboration with other approaches, which often results in moderate to severe side effects during and after the treatment period. Therefore, the focus is now shifting to explore and retrieve those plant-based products that could be utilized to treat HCC with maximum efficacy without causing any side effects. Strigolactones (SL) are compounds of plant origin derived from Striga lutea responsible for controlling the branching pattern of stem and have reported anti-cancerous activity by promoting apoptosis at micromolar concentrations. However, little work has been done concerning determining the pharmacogenomic effect of strigolactones on HCC. METHODS: Current work focuses on comparing therapeutic efficiencies of SL analogs against core targets of HCC using network pharmacology approach, pharmacokinetics analysis, gene ontogeny, functional enrichment analysis, molecular docking and Molecular Dynamics simulation. RESULTS: Drug-target prediction and functional enrichment analysis showed that HDAC1 and HDAC2 are the core proteins involved in hepatocellular carcinoma that strigolactone analogs can target. Consequently, results from molecular docking and MD simulation analyses report that among all the SL analogs strigol, epistrigol and nijmegen1 can turn out to be most effective in downregulating the expression of HDAC1, HDAC2 and CYP19A. CONCLUSION: Strigol, epistrigol and nijmegen1 could be used as potential inhibitors against HCC and can be further validated through in vitro/in vivo studies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Compostos Heterocíclicos com 3 Anéis , Humanos , Lactonas , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Acoplamento Molecular
3.
J Biomol Struct Dyn ; 41(9): 4106-4123, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35467486

RESUMO

Coronavirus disease 2019 (COVID-19) caused appalling conditions over the globe, which is currently faced by the entire human population. One of the primary reasons behind the uncontrollable situation is the lack of specific therapeutics. In such conditions, drug repurposing of available drugs (viz. Chloroquine, Lopinavir, etc.) has been proposed, but various clinical and preclinical investigations indicated the toxicity and adverse side effects of these drugs. This study explores the inhibition potency of phytochemicals from Tinospora cordifolia (Giloy) against SARS CoV-2 drugable targets (spike glycoprotein and Mpro proteins) using molecular docking and MD simulation studies. ADMET, virtual screening, MD simulation, postsimulation analysis (RMSD, RMSF, Rg, SASA, PCA, FES) and MM-PBSA calculations were carried out to predict the inhibition efficacy of the phytochemicals against SARS CoV-2 targets. Tinospora compounds showed better binding affinity than the corresponding reference. Their binding affinity ranges from -9.63 to -5.68 kcal/mole with spike protein and -10.27 to -7.25 kcal/mole with main protease. Further 100 ns exhaustive simulation studies and MM-PBSA calculations supported favorable and stable binding of them. This work identifies Nine Tinospora compounds as potential inhibitors. Among those, 7-desacetoxy-6,7-dehydrogedunin was found to inhibit both spike (7NEG) and Mpro (7MGS and 6LU7) proteins, and Columbin was found to inhibit selected spike targets (7NEG and 7NX7). In all the analyses, these compounds performed well and confirms the stable binding. Hence the identified compounds, advocated as potential inhibitors can be taken for further in vitro and in vivo experimental validation to determine their anti-SARS-CoV-2 potential.Communicated by Ramaswamy H. Sarma.


Assuntos
Antivirais , Simulação por Computador , Proteases 3C de Coronavírus , Proteínas Mutantes , Compostos Fitoquímicos , Inibidores de Proteases , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Tinospora , Humanos , Proteases 3C de Coronavírus/antagonistas & inibidores , COVID-19/virologia , Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Compostos Fitoquímicos/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Tinospora/química , Antivirais/efeitos adversos , Antivirais/toxicidade , Substituição de Aminoácidos
4.
ACS Appl Bio Mater ; 6(9): 3674-3682, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37603700

RESUMO

Due to the enhanced resistance of bacteria to antibiotics, researchers always try to find effective alternatives to treat drug-resistant bacterial infections. In this context, we have explored antimicrobial peptides (AMPs), which are a broad class of small peptide molecules, and investigated their efficacy as potent antibacterial and antibiofilm agents. AMPs can cause cell death either through disruption of the cell membrane or by inhibiting vital intracellular functions, by binding to RNA, DNA, or intracellular components upon transversion through the cell membrane. We attempted to find potent intracellular cationic AMPs that can demonstrate antibacterial activity through interaction with DNA. As a source of AMPs, we have utilized those that are secreted from the human microbiome with the anticipation that these will be non-toxic in nature. Out of the total 1087 AMPs, 27 were screened on the basis of amino acid length and efficacy to cross the cell membrane barrier. From the list of 27 peptides, 4 candidates were selected through the docking score of these peptides with the DNA binding domain of H2A proteins. Further, the molecular dynamics simulation analysis demonstrated that 2 AMPs, i.e., peptides 7 and 25, are having considerable membrane permeation and DNA binding ability. Further, the in vitro analysis indicated that both peptides 7 and 25 could exhibit potent antibacterial and antibiofilm activities. In order to further enhance the antibiofilm potency, the above AMPs were used as supplements to silver nanoclusters (Ag NCs) to get synergistic activity. The synergistic activity of Ag NCs was found to be significantly increased with both the above AMPs.


Assuntos
Peptídeos Antimicrobianos , Microbiota , Humanos , Transporte Biológico , Antibacterianos/farmacologia , Biofilmes
5.
Biomed Mater ; 17(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35105823

RESUMO

Nearly 80% of human chronic infections are caused due to bacterial biofilm formation. This is the most leading cause for failure of medical implants resulting in high morbidity and mortality. In addition, biofilms are also known to cause serious problems in food industry. Biofilm impart enhanced antibiotic resistance and become recalcitrant to host immune responses leading to persistent and recurrent infections. It makes the clinical treatment for biofilm infections very difficult. Reduced penetration of antibiotic molecules through EPS, mutation of the target site, accumulation of antibiotic degrading enzymes, enhanced expression of efflux pump genes are the probable causes for antibiotics resistance. Accordingly, strategies like administration of topical antibiotics and combined therapy of antibiotics with antimicrobial peptides are considered for alternate options to overcome the antibiotics resistance. A number of other remediation strategies for both biofilm inhibition and dispersion of established biofilm have been developed. The metallic nanoparticles (NPs) and their oxides have recently gained a tremendous thrust as antibiofilm therapy for their unique features. This present comprehensive review gives the understanding of antibiotic resistance mechanisms of biofilm and provides an overview of various currently available biofilm remediation strategies, focusing primarily on the applications of metallic NPs and their oxides.


Assuntos
Infecções Bacterianas , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Resistência Microbiana a Medicamentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA