Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(3): 1730-1739, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31940195

RESUMO

We report elevated levels of gaseous inorganic chlorinated and nitrogenated compounds in indoor air while cleaning with a commercial bleach solution during the House Observations of Microbial and Environmental Chemistry field campaign in summer 2018. Hypochlorous acid (HOCl), chlorine (Cl2), and nitryl chloride (ClNO2) reached part-per-billion by volume levels indoors during bleach cleaning-several orders of magnitude higher than typically measured in the outdoor atmosphere. Kinetic modeling revealed that multiphase chemistry plays a central role in controlling indoor chlorine and reactive nitrogen chemistry during these periods. Cl2 production occurred via heterogeneous reactions of HOCl on indoor surfaces. ClNO2 and chloramine (NH2Cl, NHCl2, NCl3) production occurred in the applied bleach via aqueous reactions involving nitrite (NO2-) and ammonia (NH3), respectively. Aqueous-phase and surface chemistry resulted in elevated levels of gas-phase nitrogen dioxide (NO2). We predict hydroxyl (OH) and chlorine (Cl) radical production during these periods (106 and 107 molecules cm-3 s-1, respectively) driven by HOCl and Cl2 photolysis. Ventilation and photolysis accounted for <50% and <0.1% total loss of bleach-related compounds from indoor air, respectively; we conclude that uptake to indoor surfaces is an important additional loss process. Indoor HOCl and nitrogen trichloride (NCl3) mixing ratios during bleach cleaning reported herein are likely detrimental to human health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Cloro , Gases , Humanos , Ácido Hipocloroso , Ventilação
2.
Environ Sci Technol ; 53(15): 8591-8598, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31283200

RESUMO

Although ammonia (NH3) is usually found at outdoor concentrations of 1-5 ppb, indoor ammonia concentrations can be much higher. Indoor ammonia is strongly emitted from cleaning products, tobacco smoke, building materials, and humans. Because of ammonia's high reactivity, solubility in water, and tendency to sorb to a variety of surfaces, it is difficult to measure, and thus a comprehensive evaluation of indoor ammonia concentrations remains an understudied topic. During HOMEChem, which was a comprehensive indoor chemistry study occurring in a test house during June 2018, the real-time concentration of ammonia indoors was measured using cavity ring-down spectroscopy. A mean unoccupied background concentration of 32 ppb was observed, with further enhancements of ammonia occurring during cooking, cleaning, and occupancy activities, reaching maximum concentrations during these activities of 130, 1592, and 99 ppb, respectively. Furthermore, ammonia concentrations were strongly influenced by indoor temperatures and heating, ventilation, and air conditioning (HVAC) operation. In the absence of activity-based sources, the HVAC operation was the main modulator of ammonia concentration indoors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Amônia , Monitoramento Ambiental , Humanos , Ventilação
3.
Commun Chem ; 4(1): 110, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36697551

RESUMO

Historically air constituents have been assumed to be well mixed in indoor environments, with single point measurements and box modeling representing a room or a house. Here we demonstrate that this fundamental assumption needs to be revisited through advanced model simulations and extensive measurements of bleach cleaning. We show that inorganic chlorinated products, such as hypochlorous acid and chloramines generated via multiphase reactions, exhibit spatial and vertical concentration gradients in a room, with short-lived ⋅OH radicals confined to sunlit zones, close to windows. Spatial and temporal scales of indoor constituents are modulated by rates of chemical reactions, surface interactions and building ventilation, providing critical insights for better assessments of human exposure to hazardous pollutants, as well as the transport of indoor chemicals outdoors.

4.
Sci Adv ; 6(8): eaay8973, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128415

RESUMO

Human health is affected by indoor air quality. One distinctive aspect of the indoor environment is its very large surface area that acts as a poorly characterized sink and source of gas-phase chemicals. In this work, air-surface interactions of 19 common indoor air contaminants with diverse properties and sources were monitored in a house using fast-response, on-line mass spectrometric and spectroscopic methods. Enhanced-ventilation experiments demonstrate that most of the contaminants reside in the surface reservoirs and not, as expected, in the gas phase. They participate in rapid air-surface partitioning that is much faster than air exchange. Phase distribution calculations are consistent with the observations when assuming simultaneous equilibria between air and large weakly polar and polar absorptive surface reservoirs, with acid-base dissociation in the polar reservoir. Chemical exposure assessments must account for the finding that contaminants that are fully volatile under outdoor air conditions instead behave as semivolatile compounds indoors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA