Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 289(11): 7275-92, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24451381

RESUMO

Zinc transporters (ZnTs) facilitate zinc efflux and zinc compartmentalization, thereby playing a key role in multiple physiological processes and pathological disorders, presumed to be modulated by transporter dimerization. We recently proposed that ZnT2 homodimerization is the underlying basis for the dominant negative effect of a novel heterozygous G87R mutation identified in women producing zinc-deficient milk. To provide direct visual evidence for the in situ dimerization and function of multiple normal and mutant ZnTs, we applied here the bimolecular fluorescence complementation (BiFC) technique, which enables direct visualization of specific protein-protein interactions. BiFC is based upon reconstitution of an intact fluorescent protein including YFP when its two complementary, non-fluorescent N- and C-terminal fragments (termed YN and YC) are brought together by a pair of specifically interacting proteins. Homodimerization of ZnT1, -2, -3, -4, and -7 was revealed by high subcellular fluorescence observed upon co-transfection of non-fluorescent ZnT-YC and ZnT-YN; this homodimer fluorescence localized in the characteristic compartments of each ZnT. The validity of the BiFC assay in ZnT dimerization was further corroborated when high fluorescence was obtained upon co-transfection of ZnT5-YC and ZnT6-YN, which are known to form heterodimers. We further show that BiFC recapitulated the pathogenic role that ZnT mutations play in transient neonatal zinc deficiency. Zinquin, a fluorescent zinc probe applied along with BiFC, revealed the in situ functionality of ZnT dimers. Hence, the current BiFC-Zinquin technique provides the first in situ evidence for the dimerization and function of wild type and mutant ZnTs in live cells.


Assuntos
Proteínas de Transporte de Cátions/química , Multimerização Proteica , Zinco/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Teste de Complementação Genética , Humanos , Proteínas Luminescentes/química , Células MCF-7 , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Fases de Leitura Aberta , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Quinolonas/química , Compostos de Tosil/química , Transfecção
2.
Front Cell Neurosci ; 13: 589, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31992971

RESUMO

Activity-dependent neuroprotective protein (ADNP) was discovered and first characterized in the laboratory of Prof. Illana Gozes to be regulated by vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide (PACAP) toward neuroprotection. Importantly, ADNP is a master regulator of >400 genes, essential for brain formation, while its haploinsufficiency causes cognitive impairments. Recently, de novo mutations in ADNP were identified as leading to the autism-like ADNP syndrome, mimicked by the Adnp-deficient mouse model. Furthermore, novel peptide derivatives of the neuroprotective ADNP-snippet NAP (NAPVSIPQ), developed in our laboratory, include SKIP and the mirroring all D-amino acid SKIP (D-SKIP). We now extended previous evidence suggesting potential antagonistic features for D-SKIP, compared with the neuroprotective peptide SKIP, as was observed by NMR analysis and social/olfactory functional testing. Here, an impact of the Adnp genotype was observed in the Morris Water Maze (MWM) test measuring cognition, coupled with improvement by SKIP, opposing the inert/exacerbating effect of D-SKIP. In the elevated plus-maze and open field tests measuring anxiety-related behaviors, contrasting effects of SKIP and D-SKIP were found, with SKIP improving/preserving the normal phenotype of the mouse, and D-SKIP causing alterations. Lastly, an in silico analysis suggested that SKIP and D-SKIP bind the microtubule end binding (EB) proteins EB1 and EB3 in different conformations, thereby indicating distinctive natures for the two peptides, potentially mediating differential in vivo effects. Altogether, our findings corroborate the notion of D-SKIP acting as an antagonist, thus distinguishing it from the neuroprotective SKIP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA