Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant Biotechnol J ; 22(1): 216-232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792967

RESUMO

Lipid biosynthesis and transport are essential for plant male reproduction. Compared with Arabidopsis and rice, relatively fewer maize lipid metabolic genic male-sterility (GMS) genes have been identified, and the sporopollenin metabolon in maize anther remains unknown. Here, we identified two maize GMS genes, ZmTKPR1-1 and ZmTKPR1-2, by CRISPR/Cas9 mutagenesis of 14 lipid metabolic genes with anther stage-specific expression patterns. Among them, tkpr1-1/-2 double mutants displayed complete male sterility with delayed tapetum degradation and abortive pollen. ZmTKPR1-1 and ZmTKPR1-2 encode tetraketide α-pyrone reductases and have catalytic activities in reducing tetraketide α-pyrone produced by ZmPKSB (polyketide synthase B). Several conserved catalytic sites (S128/130, Y164/166 and K168/170 in ZmTKPR1-1/-2) are essential for their enzymatic activities. Both ZmTKPR1-1 and ZmTKPR1-2 are directly activated by ZmMYB84, and their encoded proteins are localized in both the endoplasmic reticulum and nuclei. Based on protein structure prediction, molecular docking, site-directed mutagenesis and biochemical assays, the sporopollenin biosynthetic metabolon ZmPKSB-ZmTKPR1-1/-2 was identified to control pollen exine formation in maize anther. Although ZmTKPR1-1/-2 and ZmPKSB formed a protein complex, their mutants showed different, even opposite, defective phenotypes of anther cuticle and pollen exine. Our findings discover new maize GMS genes that can contribute to male-sterility line-assisted maize breeding and also provide new insights into the metabolon-regulated sporopollenin biosynthesis in maize anther.


Assuntos
Arabidopsis , Infertilidade , Zea mays/genética , Zea mays/metabolismo , Edição de Genes , Sistemas CRISPR-Cas/genética , Simulação de Acoplamento Molecular , Pironas/metabolismo , Melhoramento Vegetal , Arabidopsis/genética , Lipídeos , Pólen/genética , Pólen/metabolismo , Infertilidade/genética , Infertilidade/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
New Phytol ; 241(4): 1421-1434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38174365

RESUMO

Receptor-like kinases (RLKs) are evolved for plant cell-cell communications. The typical RLK protein contains an extracellular and hypervariable N-terminus to perceive various signals, a transmembrane domain to anchor into plasma membrane, and a cytoplasmic, highly conserved kinase domain to phosphorylate target proteins. To date, RLKs have manifested their significance in a myriad of biological processes during plant reproductive growth, especially in male fertility. This review first summarizes a recent update on RLKs and their interacting protein partners controlling anther and pollen development, pollen release from dehisced anther, and pollen function during pollination and fertilization. Then, regulatory networks of RLK signaling pathways are proposed. In addition, we predict RLKs in maize and rice genome, obtain homologs of well-studied RLKs from phylogeny of three subfamilies and then analyze their expression patterns in developing anthers of maize and rice to excavate potential RLKs regulating male fertility in crops. Finally, current challenges and future prospects regarding RLKs are discussed. This review will contribute to a better understanding of plant male fertility control by RLKs, creating potential male sterile lines, and inspiring innovative crop breeding methods.


Assuntos
Melhoramento Vegetal , Plantas , Plantas/genética , Plantas/metabolismo , Transdução de Sinais , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fertilidade
3.
Plant Cell Rep ; 42(9): 1395-1417, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37311877

RESUMO

KEY MESSAGE: This review summarizes the molecular basis and emerging applications of developmental regulatory genes and nanoparticles in plant transformation and discusses strategies to overcome the obstacles of genotype dependency in plant transformation. Plant transformation is an important tool for plant research and biotechnology-based crop breeding. However, Plant transformation and regeneration are highly dependent on species and genotype. Plant regeneration is a process of generating a complete individual plant from a single somatic cell, which involves somatic embryogenesis, root and shoot organogeneses. Over the past 40 years, significant advances have been made in understanding molecular mechanisms of embryogenesis and organogenesis, revealing many developmental regulatory genes critical for plant regeneration. Recent studies showed that manipulating some developmental regulatory genes promotes the genotype-independent transformation of several plant species. Besides, nanoparticles penetrate plant cell wall without external forces and protect cargoes from degradation, making them promising materials for exogenous biomolecule delivery. In addition, manipulation of developmental regulatory genes or application of nanoparticles could also bypass the tissue culture process, paving the way for efficient plant transformation. Applications of developmental regulatory genes and nanoparticles are emerging in the genetic transformation of different plant species. In this article, we review the molecular basis and applications of developmental regulatory genes and nanoparticles in plant transformation and discuss how to further promote genotype-independent plant transformation.


Assuntos
Biotecnologia , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Genes Reguladores , Genótipo , Técnicas de Embriogênese Somática de Plantas
4.
Proc Natl Acad Sci U S A ; 117(38): 23499-23509, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907946

RESUMO

Understanding the molecular basis of male sterility and developing practical male-sterility systems are essential for heterosis utilization and commercial hybrid seed production in crops. Here, we report molecular regulation by genic male-sterility gene maize male sterility 7 (ZmMs7) and its application for developing a dominant male-sterility system in multiple species. ZmMs7 is specifically expressed in maize anthers, encodes a plant homeodomain (PHD) finger protein that functions as a transcriptional activator, and plays a key role in tapetal development and pollen exine formation. ZmMs7 can interact with maize nuclear factor Y (NF-Y) subunits to form ZmMs7-NF-YA6-YB2-YC9/12/15 protein complexes that activate target genes by directly binding to CCAAT box in their promoter regions. Premature expression of ZmMs7 in maize by an anther-specific promoter p5126 results in dominant and complete male sterility but normal vegetative growth and female fertility. Early expression of ZmMs7 downstream genes induced by prematurely expressed ZmMs7 leads to abnormal tapetal development and pollen exine formation in p5126-ZmMs7 maize lines. The p5126-ZmMs7 transgenic rice and Arabidopsis plants display similar dominant male sterility. Meanwhile, the mCherry gene coupled with p5126-ZmMs7 facilitates the sorting of dominant sterility seeds based on fluorescent selection. In addition, both the ms7-6007 recessive male-sterility line and p5126-ZmMs7M dominant male-sterility line are highly stable under different genetic germplasms and thus applicable for hybrid maize breeding. Together, our work provides insight into the mechanisms of anther and pollen development and a promising technology for hybrid seed production in crops.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Zea mays/genética , Arabidopsis/genética , Produtos Agrícolas , Oryza/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Pólen/genética , Zea mays/crescimento & desenvolvimento
5.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675174

RESUMO

Plant lipid transfer proteins (LTPs) play essential roles in various biological processes, including anther and pollen development, vegetative organ development, seed development and germination, and stress response, but the research progress varies greatly among Arabidopsis, rice and maize. Here, we presented a preliminary introduction and characterization of the whole 65 LTP genes in maize, and performed a phylogenetic tree and gene ontology analysis of the LTP family members in maize. We compared the research progresses of the reported LTP genes involved in male fertility and other biological processes in Arabidopsis and rice, and thus provided some implications for their maize orthologs, which will provide useful clues for the investigation of LTP transporters in maize. We predicted the functions of LTP genes based on bioinformatic analyses of their spatiotemporal expression patterns by using RNA-seq and qRT-PCR assays. Finally, we discussed the advances and challenges in substrate identification of plant LTPs, and presented the future research directions of LTPs in plants. This study provides a basic framework for functional research and the potential application of LTPs in multiple plants, especially for male sterility research and application in maize.


Assuntos
Arabidopsis , Arabidopsis/genética , Zea mays/genética , Zea mays/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Fertilidade/genética , Lipídeos , Regulação da Expressão Gênica de Plantas
6.
Plant Biotechnol J ; 20(12): 2342-2356, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36070225

RESUMO

Anther cuticle and pollen exine are two crucial lipid layers that ensure normal pollen development and pollen-stigma interaction for successful fertilization and seed production in plants. Their formation processes share certain common pathways of lipid biosynthesis and transport across four anther wall layers. However, molecular mechanism underlying a trade-off of lipid-metabolic products to promote the proper formation of the two lipid layers remains elusive. Here, we identified and characterized a maize male-sterility mutant pksb, which displayed denser anther cuticle but thinner pollen exine as well as delayed tapetal degeneration compared with its wild type. Based on map-based cloning and CRISPR/Cas9 mutagenesis, we found that the causal gene (ZmPKSB) of pksb mutant encoded an endoplasmic reticulum (ER)-localized polyketide synthase (PKS) with catalytic activities to malonyl-CoA and midchain-fatty acyl-CoA to generate triketide and tetraketide α-pyrone. A conserved catalytic triad (C171, H320 and N353) was essential for its enzymatic activity. ZmPKSB was specifically expressed in maize anthers from stages S8b to S9-10 with its peak at S9 and was directly activated by a transcription factor ZmMYB84. Moreover, loss function of ZmMYB84 resulted in denser anther cuticle but thinner pollen exine similar to the pksb mutant. The ZmMYB84-ZmPKSB regulatory module controlled a trade-off between anther cuticle and pollen exine formation by altering expression of a series of genes related to biosynthesis and transport of sporopollenin, cutin and wax. These findings provide new insights into the fine-tuning regulation of lipid-metabolic balance to precisely promote anther cuticle and pollen exine formation in plants.


Assuntos
Pólen , Zea mays , Zea mays/genética , Pólen/genética , Fertilidade , Lipídeos , Coenzima A , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Flores/genética , Mutação
7.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012571

RESUMO

ATP-binding cassette subfamily G (ABCG) transporters are extensive in plants and play essential roles in various processes influencing plant fitness, but the research progress varies greatly among Arabidopsis, rice and maize. In this review, we present a consolidated nomenclature and characterization of the whole 51 ABCG transporters in maize, perform a phylogenetic analysis and classification of the ABCG subfamily members in maize, and summarize the latest research advances in ABCG transporters for these three plant species. ABCG transporters are involved in diverse processes in Arabidopsis and rice, such as anther and pollen development, vegetative and female organ development, abiotic and biotic stress response, and phytohormone transport, which provide useful clues for the functional investigation of ABCG transporters in maize. Finally, we discuss the current challenges and future perspectives for the identification and mechanism analysis of substrates for plant ABCG transporters. This review provides a basic framework for functional research and the potential application of ABCG transporters in multiple plants, including maize.


Assuntos
Arabidopsis , Oryza , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina , Fertilidade/genética , Oryza/genética , Filogenia , Plantas , Zea mays/genética
8.
Plant Biotechnol J ; 19(9): 1769-1784, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33772993

RESUMO

Identifying genic male-sterility (GMS) genes and elucidating their roles are important to unveil plant male reproduction and promote their application in crop breeding. However, compared with Arabidopsis and rice, relatively fewer maize GMS genes have been discovered and little is known about their regulatory pathways underlying anther and pollen development. Here, by sequencing and analysing anther transcriptomes at 11 developmental stages in maize B73, Zheng58 and M6007 inbred lines, 1100 transcription factor (TF) genes were identified to be stably differentially expressed among different developmental stages. Among them, 14 maize TF genes (9 types belonging to five TF families) were selected and performed CRISPR/Cas9-mediated gene mutagenesis, and then, 12 genes in eight types, including ZmbHLH51, ZmbHLH122, ZmTGA9-1/-2/-3, ZmTGA10, ZmMYB84, ZmMYB33-1/-2, ZmPHD11 and ZmLBD10/27, were identified as maize new GMS genes by using DNA sequencing, phenotypic and cytological analyses. Notably, ZmTGA9-1/-2/-3 triple-gene mutants and ZmMYB33-1/-2 double-gene mutants displayed complete male sterility, but their double- or single-gene mutants showed male fertility. Similarly, ZmLBD10/27 double-gene mutant displayed partial male sterility with 32.18% of aborted pollen grains. In addition, ZmbHLH51 was transcriptionally activated by ZmbHLH122 and their proteins were physically interacted. Molecular markers co-segregating with these GMS mutations were developed to facilitate their application in maize breeding. Finally, all 14-type maize GMS TF genes identified here and reported previously were compared on functional conservation and diversification among maize, rice and Arabidopsis. These findings enrich GMS gene and mutant resources for deeply understanding the regulatory network underlying male fertility and for creating male-sterility lines in maize.


Assuntos
Infertilidade das Plantas , Fatores de Transcrição , Zea mays , Sistemas CRISPR-Cas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Infertilidade das Plantas/genética , Fatores de Transcrição/genética , Zea mays/genética
9.
J Exp Bot ; 72(12): 4298-4318, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33822021

RESUMO

Fatty acyl reductases (FARs) catalyse the reduction of fatty acyl-coenzyme A (CoA) or -acyl carrier protein (ACP) substrates to primary fatty alcohols, which play essential roles in lipid metabolism in plants. However, the mechanism by which FARs are involved in male reproduction is poorly defined. Here, we found that two maize allelic mutants, ms25-6065 and ms25-6057, displayed defective anther cuticles, abnormal Ubisch body formation, impaired pollen exine formation and complete male sterility. Based on map-based cloning and CRISPR/Cas9 mutagenesis, Zm00001d048337 was identified as ZmMs25, encoding a plastid-localized FAR with catalytic activities to multiple acyl-CoA substrates in vitro. Four conserved residues (G101, G104, Y327 and K331) of ZmMs25 were critical for its activity. ZmMs25 was predominantly expressed in anther, and was directly regulated by transcription factor ZmMYB84. Lipidomics analysis revealed that ms25 mutation had significant effects on reducing cutin monomers and internal lipids, and altering the composition of cuticular wax in anthers. Moreover, loss of function of ZmMs25 significantly affected the expression of its four paralogous genes and five cloned lipid metabolic male-sterility genes in maize. These data suggest that ZmMs25 is required for anther development and male fertility, indicating its application potential in maize and other crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Zea mays , Oxirredutases , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Pólen/genética , Pólen/metabolismo , Zea mays/genética , Zea mays/metabolismo
10.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34360681

RESUMO

The function and regulation of lipid metabolic genes are essential for plant male reproduction. However, expression regulation of lipid metabolic genic male sterility (GMS) genes by noncoding RNAs is largely unclear. Here, we systematically predicted the microRNA regulators of 34 maize white brown complex members in ATP-binding cassette transporter G subfamily (WBC/ABCG) genes using transcriptome analysis. Results indicate that the ZmABCG26 transcript was predicted to be targeted by zma-miR164h-5p, and their expression levels were negatively correlated in maize B73 and Oh43 genetic backgrounds based on both transcriptome data and qRT-PCR experiments. CRISPR/Cas9-induced gene mutagenesis was performed on ZmABCG26 and another lipid metabolic gene, ZmFAR1. DNA sequencing, phenotypic, and cytological observations demonstrated that both ZmABCG26 and ZmFAR1 are GMS genes in maize. Notably, ZmABCG26 proteins are localized in the endoplasmic reticulum (ER), chloroplast/plastid, and plasma membrane. Furthermore, ZmFAR1 shows catalytic activities to three CoA substrates in vitro with the activity order of C12:0-CoA > C16:0-CoA > C18:0-CoA, and its four key amino acid sites were critical to its catalytic activities. Lipidomics analysis revealed decreased cutin amounts and increased wax contents in anthers of both zmabcg26 and zmfar1 GMS mutants. A more detailed analysis exhibited differential changes in 54 monomer contents between wild type and mutants, as well as between zmabcg26 and zmfar1. These findings will promote a deeper understanding of miRNA-regulated lipid metabolic genes and the functional diversity of lipid metabolic genes, contributing to lipid biosynthesis in maize anthers. Additionally, cosegregating molecular markers for ZmABCG26 and ZmFAR1 were developed to facilitate the breeding of male sterile lines.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Aldeído Oxirredutases/genética , Flores/metabolismo , Metabolismo dos Lipídeos , MicroRNAs/metabolismo , Zea mays/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aldeído Oxirredutases/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , RNA-Seq , Zea mays/genética , Zea mays/crescimento & desenvolvimento
11.
Theor Appl Genet ; 132(7): 2137-2154, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31016347

RESUMO

KEY MESSAGE: Genome-wide analysis of maize GPAT gene family, cytological characterization of ZmMs33/ZmGPAT6 gene encoding an ER-localized protein with four conserved motifs, and its molecular breeding application in maize. Glycerol-3-phosphate acyltransferase (GPAT) mediates the initial step of glycerolipid biosynthesis and plays pivotal roles in plant growth and development. Compared with GPAT genes in Arabidopsis, our understanding to maize GPAT gene family is very limited. Recently, ZmMs33 gene has been identified to encode a sn-2 GPAT protein and control maize male fertility in our laboratory (Xie et al. in Theor Appl Genet 131:1363-1378, 2018). However, the functional mechanism of ZmMs33 remains elusive. Here, we reported the genome-wide analysis of maize GPAT gene family and found that 20 maize GPAT genes (ZmGPAT1-20) could be classified into three distinct clades similar to those of ten GPAT genes in Arabidopsis. Expression analyses of these ZmGPAT genes in six tissues and in anther during six developmental stages suggested that some of ZmGPATs may play crucial roles in maize growth and anther development. Among them, ZmGPAT6 corresponds to the ZmMs33 gene. Systemic cytological observations indicated that loss function of ZmMs33/ZmGPAT6 led to defective anther cuticle, arrested degeneration of anther wall layers, abnormal formation of Ubisch bodies and exine and ultimately complete male sterility in maize. The endoplasmic reticulum-localized ZmMs33/ZmGPAT6 possessed four conserved amino acid motifs essential for acyltransferase activity, while ZmMs33/ZmGPAT6 locus and its surrounding genomic region have greatly diversified during evolution of gramineous species. Finally, a multi-control sterility system was developed to produce ms33 male-sterile lines by using a combination strategy of transgene and marker-assisted selection. This work will provide useful information for further deciphering functional mechanism of ZmGPAT genes and facilitate molecular breeding application of ZmMs33/ZmGPAT6 gene in maize.


Assuntos
Família Multigênica , Melhoramento Vegetal , Infertilidade das Plantas/genética , Zea mays/genética , Sequência de Aminoácidos , Flores/genética , Flores/fisiologia , Genes de Plantas , Estudos de Associação Genética , Microscopia Eletrônica de Varredura , Filogenia , Plantas Geneticamente Modificadas , Pólen/ultraestrutura , Sintenia , Zea mays/fisiologia
12.
Nature ; 496(7443): 87-90, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23535596

RESUMO

Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.


Assuntos
Genoma de Planta/genética , Triticum/genética , Sequência de Bases , Brachypodium/genética , Produtos Agrícolas/classificação , Produtos Agrícolas/genética , Diploide , Marcadores Genéticos/genética , Dados de Sequência Molecular , Oryza/genética , Filogenia , Sorghum/genética , Sintenia/genética , Triticum/classificação , Zea mays/genética
13.
Int J Mol Sci ; 20(14)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311189

RESUMO

The "competing endogenous RNA (ceRNA) hypothesis" has recently been proposed for a new type of gene regulatory model in many organisms. Anther development is a crucial biological process in plant reproduction, and its gene regulatory network (GRN) has been gradually revealed during the past two decades. However, it is still unknown whether ceRNAs contribute to anther development and sexual reproduction in plants. We performed RNA and small RNA sequencing of anther tissues sampled at three developmental stages in two maize lines. A total of 28,233 stably transcribed loci, 61 known and 51 potentially novel microRNAs (miRNAs) were identified from the transcriptomes. Predicted ceRNAs and target genes were found to conserve in sequences of recognition sites where their corresponding miRNAs bound. We then reconstructed 79 ceRNA-miRNA-target gene regulatory networks consisting of 51 known miRNAs, 28 potentially novel miRNAs, 619 ceRNA-miRNA pairs, and 869 miRNA-target gene pairs. More than half of the regulation pairs showed significant negative correlations at transcriptional levels. Several well-studied miRNA-target gene pairs associated with plant flower development were located in some networks, including miR156-SPL, miR159-MYB, miR160-ARF, miR164-NAC, miR172-AP2, and miR319-TCP pairs. Six target genes in the networks were found to be orthologs of functionally confirmed genes participating in anther development in plants. Our results provide an insight that the ceRNA-miRNA-target gene regulatory networks likely contribute to anther development in maize. Further functional studies on a number of ceRNAs, miRNAs, and target genes will facilitate our deep understanding on mechanisms of anther development and sexual plants reproduction.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/genética , Zea mays/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Transcriptoma , Zea mays/crescimento & desenvolvimento
14.
Int J Mol Sci ; 20(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897816

RESUMO

Genic male sterility (GMS) mutant is a useful germplasm resource for both theory research and production practice. The identification and characterization of GMS genes, and assessment of male-sterility stability of GMS mutant under different genetic backgrounds in Zea may (maize) have (1) deepened our understanding of the molecular mechanisms controlling anther and pollen development, and (2) enabled the development and efficient use of many biotechnology-based male-sterility (BMS) systems for hybrid breeding. Here, we reported a complete GMS mutant (ms20), which displays abnormal anther cuticle and pollen development. Its fertility restorer gene ZmMs20 was found to be a new allele of IPE1 encoding a glucose methanol choline (GMC) oxidoreductase involved in lipid metabolism in anther. Phylogenetic and microsynteny analyses showed that ZmMs20 was conserved among gramineous species, which provide clues for creating GMS materials in other crops. Additionally, among the 17 maize cloned GMS genes, ZmMs20 was found to be similar to the expression patterns of Ms7, Ms26, Ms6021, APV1, and IG1 genes, which will give some clues for deciphering their functional relationships in regulating male fertility. Finally, two functional markers of ZmMs20/ms20 were developed and tested for creating maize ms20 male-sterility lines in 353 genetic backgrounds, and then an artificial maintainer line of ms20 GMS mutation was created by using ZmMs20 gene, ms20 mutant, and BMS system. This work will promote our understanding of functional mechanisms of male fertility and facilitate molecular breeding of ms20 male-sterility lines for hybrid seed production in maize.


Assuntos
Infertilidade das Plantas/fisiologia , Zea mays/genética , Filogenia , Melhoramento Vegetal , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/classificação
15.
Plant Biotechnol J ; 16(2): 459-471, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28678349

RESUMO

Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male-sterile seeds. Here, we develop a multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild-type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map-based cloning approach and encodes a PHD-finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7-6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α-amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds and (v) herbicide-resistant gene Bar for transgenic seed selection. Self-pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and nontransgenic normal colour seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal colour are male sterile. Cross-pollination of the transgenic plants to male-sterile plants propagates male-sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harbouring two pollen-disrupted genes is lower than that containing one pollen-disrupted gene. The MCS system has great potential to enhance the efficiency of maize male-sterile line propagation and commercial hybrid seed production.


Assuntos
Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Sementes/metabolismo , Sementes/fisiologia , Zea mays/metabolismo , Zea mays/fisiologia , Hibridização Genética/genética , Hibridização Genética/fisiologia , Infertilidade das Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética
16.
Theor Appl Genet ; 131(6): 1363-1378, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29546443

RESUMO

KEY MESSAGE: Map-based cloning of maize ms33 gene showed that ZmMs33 encodes a sn-2 glycerol-3-phosphate acyltransferase, the ortholog of rice OsGPAT3, and it is essential for male fertility in maize. Genetic male sterility has been widely studied for its biological significance and commercial value in hybrid seed production. Although many male-sterile mutants have been identified in maize (Zea mays L.), it is likely that most genes that cause male sterility are unknown. Here, we report a recessive genetic male-sterile mutant, male sterility33 (ms33), which displays small, pale yellow anthers, and complete male sterility. Using a map-based cloning approach, maize GRMZM2G070304 was identified as the ms33 gene (ZmMs33). ZmMs33 encodes a novel sn-2 glycerol-3-phosphate acyltransferase (GPAT) in maize. A functional complementation experiment showed that GRMZM2G070304 can rescue the male-sterile phenotype of the ms33-6029 mutant. GRMZM2G070304 was further confirmed to be the ms33 gene via targeted knockouts induced by the clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9 system. ZmMs33 is preferentially expressed in the immature anther from the quartet to early-vacuolate microspore stages and in root tissues at the fifth leaf growth stage. Phylogenetic analysis indicated that ZmMs33 and OsGPAT3 are evolutionarily conserved for anther and pollen development in monocot species. This study reveals that the monocot-specific GPAT3 protein plays an important role in male fertility in maize, and ZmMs33 and mutants in this gene may have value in maize male-sterile line breeding and hybrid seed production.


Assuntos
Genes de Plantas , Glicerol-3-Fosfato O-Aciltransferase/genética , Infertilidade das Plantas/genética , Zea mays/genética , Sequência de Aminoácidos , Sistemas CRISPR-Cas , Mapeamento Cromossômico , Clonagem Molecular , Genes Recessivos , Fenótipo , Filogenia , Raízes de Plantas/genética , Pólen/genética , Zea mays/enzimologia
17.
Sensors (Basel) ; 18(2)2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466311

RESUMO

Network slicing is a key feature of the upcoming 5G networks allowing the design and deployment of customized communication systems to integrate services provided by vertical industries. In this context, massive Internet of Things (mIoT) is regarded as a compelling use case, both for its relevance from business perspective, and for the technical challenges it poses to network design. With their envisaged massive deployment of devices requiring sporadic connectivity and small data transmission, yet Quality of Service (QoS) constrained, mIoT services will need an ad-hoc end-to-end (E2E) slice, i.e., both access and core network with enhanced Control and User planes (CP/UP). After revising the key requirements of mIoT and identifying major shortcomings of previous generation networks, this paper presents and evaluates an E2E mIoT network slicing solution, featuring a new connectivity model overcoming the load limitations of legacy systems. Unique in its kind, this paper addresses mIoT requirements from an end-to-end perspective highlighting and solving, unlike most prior related work, the connectivity challenges posed to the core network. Results demonstrate that the proposed solution, reducing CP signaling and optimizing UP resource utilization, is a suitable candidate for next generation network standards to efficiently handle massive device deployment.

18.
Int J Biometeorol ; 61(4): 685-699, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27888338

RESUMO

The quantitative evaluation of the impact of drought on crop yield is one of the most important aspects in agricultural water resource management. To assess the impact of drought on wheat yield, the Environmental Policy Integrated Climate (EPIC) crop growth model and daily Standardized Precipitation Evapotranspiration Index (SPEI), which is based on daily meteorological data, are adopted in the Huang Huai Hai Plain. The winter wheat crop yields are estimated at 28 stations, after calibrating the cultivar coefficients based on the experimental site data, and SPEI data was taken 11 times across the growth season from 1981 to 2010. The relationship between estimated yield and multi-scale SPEI were analyzed. The optimum time scale SPEI to monitor drought during the crop growth period was determined. The reference yield was determined by averaging the yields from numerous non-drought years. From this data, we propose a comprehensive quantitative method which can be used to predict the impact of drought on wheat yields by combining the daily multi-scale SPEI and crop growth process model. This method was tested in the Huang Huai Hai Plain. The results suggested that estimation of calibrated EPIC was a good predictor of crop yield in the Huang Huai Hai Plain, with lower RMSE (15.4 %) between estimated yield and observed yield at six agrometeorological stations. The soil moisture at planting time was affected by the precipitation and evapotranspiration during the previous 90 days (about 3 months) in the Huang Huai Hai Plain. SPEIG90 was adopted as the optimum time scale SPEI to identify the drought and non-drought years, and identified a drought year in 2000. The water deficit in the year 2000 was significant, and the rate of crop yield reduction did not completely correspond with the volume of water deficit. Our proposed comprehensive method which quantitatively evaluates the impact of drought on crop yield is reliable. The results of this study further our understanding why the adoption of counter measures against drought is important and direct farmers to choose drought-resistant crops.


Assuntos
Secas , Modelos Teóricos , Triticum/crescimento & desenvolvimento , China , Transpiração Vegetal , Triticum/fisiologia
19.
Theor Appl Genet ; 127(2): 359-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24212587

RESUMO

KEY MESSAGE: Ion beam mutations can be efficiently isolated and deployed for functional comparison of homoeologous loci in polyploid plants, and Glu - 1 loci differ substantially in their contribution to wheat gluten functionality. To efficiently conduct genetic analysis, it is beneficial to have multiple types of mutants for the genes under investigation. Here, we demonstrate that ion beam-induced deletion mutants can be efficiently isolated for comparing the function of homoeologous loci of common wheat (Triticum aestivum). Through fragment analysis of PCR products from M2 plants, ion beam mutants lacking homoeologous Glu-A1, Glu-B1 or Glu-D1 loci, which encode high molecular weight glutenin subunits (HMW-GSs) and affect gluten functionality and end-use quality of common wheat, could be isolated simultaneously. Three deletion lines missing Glu-A1, Glu-B1 or Glu-D1 were developed from the original mutants, with the Glu-1 genomic regions deleted in these lines estimated using newly developed DNA markers. Apart from lacking the target HMW-GSs, the three lines all showed decreased accumulation of low molecular weight glutenin subunits (LMW-GSs) and increased amounts of gliadins. Based on the test data of five gluten and glutenin macropolymer (GMP) parameters obtained with grain samples harvested from two environments, we conclude that the genetic effects of Glu-1 loci on gluten functionality can be ranked as Glu-D1 > Glu-B1 > Glu-A1. Furthermore, it is suggested that Glu-1 loci contribute to gluten functionality both directly (by promoting the formation of GMP) and indirectly (through keeping the balance among HMW-GSs, LMW-GSs and gliadins). Finally, the efficient isolation of ion beam mutations for functional comparison of homoeologous loci in polyploid plants and the usefulness of Glu-1 deletion lines for further studying the contribution of Glu-1 loci to gluten functionality are discussed.


Assuntos
Glutens/metabolismo , Mutação , Triticum/genética , Sequência de Bases , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Glutens/genética , Reação em Cadeia da Polimerase , Poliploidia , Triticum/metabolismo
20.
Plant Physiol Biochem ; 210: 108654, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663264

RESUMO

Fatty acid de novo biosynthesis in plant plastids is initiated from acetyl-CoA and catalyzed by a series of enzymes, which is required for the vegetative growth, reproductive growth, seed development, stress response, chloroplast development and other biological processes. In this review, we systematically summarized the fatty acid de novo biosynthesis-related genes/enzymes and their critical roles in various plant developmental processes. Based on bioinformatic analysis, we identified fatty acid synthase encoding genes and predicted their potential functions in maize growth and development, especially in anther and pollen development. Finally, we highlighted the potential applications of these fatty acid synthases in male-sterility hybrid breeding, seed oil content improvement, herbicide and abiotic stress resistance, which provides new insights into future molecular crop breeding.


Assuntos
Ácidos Graxos , Plastídeos , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Plastídeos/metabolismo , Plastídeos/enzimologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Reprodução , Pólen/genética , Pólen/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/enzimologia , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/genética , Zea mays/genética , Zea mays/metabolismo , Zea mays/enzimologia , Plantas/metabolismo , Plantas/genética , Plantas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA