Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(D1): D937-D943, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29106618

RESUMO

Rare diseases affect over a hundred million people worldwide, most of these patients are not accurately diagnosed and effectively treated. The limited knowledge of rare diseases forms the biggest obstacle for improving their treatment. Detailed clinical phenotyping is considered as a keystone of deciphering genes and realizing the precision medicine for rare diseases. Here, we preset a standardized system for various types of rare diseases, called encyclopedia of Rare disease Annotations for Precision Medicine (eRAM). eRAM was built by text-mining nearly 10 million scientific publications and electronic medical records, and integrating various data in existing recognized databases (such as Unified Medical Language System (UMLS), Human Phenotype Ontology, Orphanet, OMIM, GWAS). eRAM systematically incorporates currently available data on clinical manifestations and molecular mechanisms of rare diseases and uncovers many novel associations among diseases. eRAM provides enriched annotations for 15 942 rare diseases, yielding 6147 human disease related phenotype terms, 31 661 mammalians phenotype terms, 10,202 symptoms from UMLS, 18 815 genes and 92 580 genotypes. eRAM can not only provide information about rare disease mechanism but also facilitate clinicians to make accurate diagnostic and therapeutic decisions towards rare diseases. eRAM can be freely accessed at http://www.unimd.org/eram/.


Assuntos
Curadoria de Dados , Bases de Dados Factuais , Medicina de Precisão , Doenças Raras , Animais , Modelos Animais de Doenças , Genótipo , Humanos , Camundongos , Fenótipo , Doenças Raras/classificação , Doenças Raras/diagnóstico , Doenças Raras/genética , Especificidade da Espécie , Terminologia como Assunto
2.
Nucleic Acids Res ; 46(D1): D977-D983, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29126123

RESUMO

There is a significant number of children around the world suffering from the consequence of the misdiagnosis and ineffective treatment for various diseases. To facilitate the precision medicine in pediatrics, a database namely the Pediatric Disease Annotations & Medicines (PedAM) has been built to standardize and classify pediatric diseases. The PedAM integrates both biomedical resources and clinical data from Electronic Medical Records to support the development of computational tools, by which enables robust data analysis and integration. It also uses disease-manifestation (D-M) integrated from existing biomedical ontologies as prior knowledge to automatically recognize text-mined, D-M-specific syntactic patterns from 774 514 full-text articles and 8 848 796 abstracts in MEDLINE. Additionally, disease connections based on phenotypes or genes can be visualized on the web page of PedAM. Currently, the PedAM contains standardized 8528 pediatric disease terms (4542 unique disease concepts and 3986 synonyms) with eight annotation fields for each disease, including definition synonyms, gene, symptom, cross-reference (Xref), human phenotypes and its corresponding phenotypes in the mouse. The database PedAM is freely accessible at http://www.unimd.org/pedam/.


Assuntos
Bases de Dados Factuais , Doença , Animais , Criança , Diagnóstico , Doença/genética , Tratamento Farmacológico , Genótipo , Humanos , Camundongos , Fenótipo
3.
Front Genet ; 9: 587, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564269

RESUMO

DNA sequencing has allowed for the discovery of the genetic cause for a considerable number of diseases, paving the way for new disease diagnostics. However, due to the lack of clinical samples and records, the molecular cause for rare diseases is always hard to identify, significantly limiting the number of rare Mendelian diseases diagnosed through sequencing technologies. Clinical phenotype information therefore becomes a major resource to diagnose rare diseases. In this article, we adopted both a phenotypic similarity method and a machine learning method to build four diagnostic models to support rare disease diagnosis. All the diagnostic models were validated using the real medical records from RAMEDIS. Each model provides a list of the top 10 candidate diseases as the prediction outcome and the results showed that all models had a high diagnostic precision (≥98%) with the highest recall reaching up to 95% while the models with machine learning methods showed the best performance. To promote effective diagnosis for rare disease in clinical application, we developed the phenotype-based Rare Disease Auxiliary Diagnosis system (RDAD) to assist clinicians in diagnosing rare diseases with the above four diagnostic models. The system is freely accessible through http://www.unimd.org/RDAD/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA