Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Opt Express ; 32(3): 4027-4035, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297611

RESUMO

In the search for resonances with high localized field strengths in all-dielectric nanophotonics, novel states such as anapoles, hybrid anapoles and bound states in the continuum have been realized. Of these, the anapoles are the most readily achievable. Interaction between vertically stacked disks supporting anapole resonances increases the field localization further. When fabricated from materials with high non-linear coefficients, such stacked disk pillars can be used as non-linear antennas. The excitation of such 3D pillars often includes off normal incidence when using focusing optics. Therefore, it is important to evaluate the angular and polarization response of such pillars. In the paper we fabricate pillars with three AlGaAs disks in a stack separated by stems of GaAs. The angular and polarization responses are evaluated experimentally with integrating sphere measurements and numerically through simulation, multipole decomposition and quasi-normal modes. We find that the stacked geometry shows hybridized anapole excitation for a broad span of incidence angles, with tunability of the individual multipolar response up to octupoles, including an electric octupole anapole, and we show how the average enhanced confined energy varies under angled excitation. The results show that the vertical stacked geometry can be used with highly focusing optics for efficient in-coupling to the hybridized anapole.

2.
Opt Express ; 30(23): 42512-44524, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366704

RESUMO

Metasurfaces consisting of hybrid metal/dielectric nanostructures carry advantages of both material platforms. The hybrid structures can not only confine electromagnetic fields in subwavelength regions, but they may also lower the absorption losses. Such optical characteristics are difficult to realize in metamaterials with only metal or dielectric structures. Hybrid designs also expand the scope of material choices and the types of optical modes that can be excited in a metasurface, thereby allowing novel light matter interactions. Here, we present a metallo-dielectric hybrid metasurface design consisting of a high-index dielectric (silicon) nanodisk array on top of a metal layer (aluminum) separated by a buffer oxide (silica) layer. The dimensions of Si nanodisks are tuned to support anapole states and the period of the nanodisk array is designed to excite surface plasmon polariton (SPP) at the metal-buffer oxide interface. The physical dimensions of the Si nanodisk and the array periods are optimized to excite the anapole and the SPP at normal incidence of light in the visible-NIR (400-900 nm) wavelength range. Finite difference time domain (FDTD) simulations show that, when the nanodisk grating is placed at a specific height (∼200 nm) from the metal surface, the two modes strongly couple at zero detuning of the resonances. The strong coupling is evident from the avoided crossing of the modes observed in the reflectance spectra and in the spectral profile of light absorption inside the Si nanodisk. A vacuum Rabi splitting of up to ∼ 129 meV is achievable by optimizing the diameters of Si nanodisk and the nanodisk array grating period. The proposed metasurface design is promising to realize open cavity strongly coupled optical systems operating at room temperatures.

3.
J Radiol Prot ; 40(1): 197-214, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31703227

RESUMO

The dismantling of structural objects during the decommissioning of nuclear facilities needs radioactive source characterisation for the planning of decommissioning strategies in compliance with the ALARA (as low as reasonably achievable) principle. The sources may arise from neutron activation of the structural components in the reactor core as well as contamination due to the radioactive release from the fuel occurred during normal operation or unplanned events in a nuclear power plant (NPP). In a pressurised heavy water reactor (PHWR), various in-core components are predominantly made of either zircaloy-2 or 4. The nuclides present as impurities in the zircaloy, playing a crucial role in the activity inventory due to neutron activation of those nuclides, which in turn determine the external gamma dose rate. The activity of the activation products depend on the neutron flux seen by the component, duration of irradiation and cooling period, half-lives of the daughter products and the amount of the impurities present in the structural components. To illustrate this, a guide tube made up of zircaloy-4 has been considered. A guide tube assembly is a part of the primary shut down system (PSS) which guides the movement of absorber elements in the upward and downward direction in the calandria. This study has identified and quantified the activity inventory in a guide tube at the end of the operation of the reactor using the ORIGEN2 code, and then estimated the associated external gamma dose rate using the FLUKA Monte Carlo code. The findings will help the management of radioactive waste, cost optimisation and collective dose budgeting during the decommissioning stage of a typical PHWR.


Assuntos
Centrais Nucleares , Exposição Ocupacional/normas , Exposição à Radiação/normas , Proteção Radiológica/normas , Zircônio/química , Raios gama , Resíduos Radioativos , Fatores de Tempo
4.
Opt Lett ; 44(21): 5117-5120, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674945

RESUMO

Gallium indium phosphide (Ga0.51In0.49P), lattice matched to gallium arsenide, shows remarkable second-order nonlinear properties, as well as strong photoluminescence (PL) due to its direct band gap. By measuring the second-harmonic generation from the GaInP microwaveguide (0.2×11×1300 µm) before and after stimulating intrinsic photobleaching, we demonstrate that the PL could be strongly suppressed (-34 dB), leaving the nonlinear properties unchanged, making it suitable for low-noise applications.

5.
Nanotechnology ; 29(25): 255502, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29595148

RESUMO

In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core-shell sensor for ppb level H2S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H2S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H2S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H2S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy.

6.
Opt Express ; 25(8): A200-A207, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437915

RESUMO

Radial junction nanopillar Si solar cells are interesting for cost effective efficiency improvement. Here, we address a convenient top-down fabrication of Si nanopillar solar cells using spin-on doping and rapid thermal annealing (RTA) for conformal PN junction formation. Broadband suppressed reflection as low as an average of 5% in the 300-1100 nm wavelength range and un-optimized cell efficiency of 7.3% are achieved. The solar cell performance can be improved by optimization of spin-on-doping and suitable surface passivation. Overall, the all RTA processed, spin-on doped nanopillar radial junction solar cell shows a very promising route for low cost and high efficiency thin film solar cell perspectives.

7.
Opt Express ; 23(2): 756-64, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25835835

RESUMO

We report on surface second-order optical nonlinearity in single GaP nanopillars (nanowaveguides). The relative contribution of optical nonlinearity from the surface and the bulk is resolved by mode confinement analysis and polarization measurements. By investigating the thickness of nonlinear region at the surface of nanopillars, we estimated the nonlinear coefficient to be ~15 times higher at the surface with respect to the bulk. The presented results are interesting both from the fundamental aspects of light-matter interaction and for future nonlinear nanophotonic devices with smaller footprint.

8.
Nanotechnology ; 26(41): 415304, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26403979

RESUMO

A unique wafer-scale self-organization process for generation of InP nanopillars is demonstrated, which is based on maskless ion-beam etching (IBE) of InP developed to obtain the nanopillars, where the height, shape, and orientation of the nanopillars can be varied by controlling the processing parameters. The fabricated InP nanopillars exhibit broadband suppression of the reflectance, 'black InP,' a property useful for solar cells. The realization of a conformal p-n junction for carrier collection, in the fabricated solar cells, is achieved by a metalorganic vapor phase epitaxy (MOVPE) overgrowth step on the fabricated pillars. The conformal overgrowth retains the broadband anti-reflection property of the InP nanopillars, indicating the feasibility of this technology for solar cells. Surface passivation of the formed InP nanopillars using sulfur-oleylamine solution resulted in improved solar-cell characteristics. An open-circuit voltage of 0.71 V and an increase of 0.13 V compared to the unpassivated device were achieved.

9.
Nano Lett ; 14(9): 5376-81, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25157424

RESUMO

We report on modal dispersion engineering for second-harmonic generation (SHG) from single vertical GaP nanopillars/nanowaveguides, fabricated by a top-down approach, using optical modal overlap between the pump (830 nm) and SHG (415 nm). We present a modal analysis for the SHG process in GaP nanopillars and demonstrate efficient utilization of the longitudinal component of the nonlinear polarization density. Our SHG measurements show quantitatively the presented model. We experimentally demonstrate that polarization beam shaping and field distribution modification of the radiated SHG light, at nanometer scale, can be achieved by tuning the pillar diameter and linear pump polarization. SHG from single pillars can be used as femtosecond nanoscopic light sources at visible wavelengths applicable for single cell/molecular imaging and interesting for future integrated nanophotonics components. While this work focuses on GaP nanopillars, the results are applicable to other semiconductor nanowire materials and synthesis methods.

10.
Nano Lett ; 13(8): 3581-8, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23898926

RESUMO

We report a new phenomenon related to Al-induced carrier confinement at the interface in core-shell GaAs/Al(x)Ga(1-x)As nanowires grown using metal-organic vapor phase epitaxy with Au as catalyst. All Al(x)Ga(1-x)As shells strongly passivated the GaAs nanowires, but surprisingly the peak photoluminescence (PL) position and the intensity from the core were found to be a strong function of Al composition in the shell at low temperatures. Large and systematic red shifts of up to ~66 nm and broadening in the PL emission from the GaAs core were observed when the Al composition in the shell exceeded 3%. On the contrary, the phenomenon was observed to be considerably weaker at the room temperature. Cross-sectional transmission electron microscopy reveals Al segregation in the shell along six Al-rich radial bands displaying a 3-fold symmetry. Time-resolved PL measurements suggest the presence of indirect electron-hole transitions at the interface at higher Al composition. We discuss all possibilities including a simple shell-core-shell model using simulations where the density of interface traps increases with the Al content, thus creating a strong local electron confinement. The carrier confinement at the interface is most likely related to Al inhomogeneity and/or Al-induced traps. Our results suggest that a low Al composition in the shell is desirable in order to achieve ideal passivation in GaAs nanowires.

11.
Nano Lett ; 12(2): 820-6, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22214365

RESUMO

We report on the experimental observation and analysis of second-harmonic generation (SHG) from vertical GaP nanopillars. Periodic arrays of GaP nanopillars with varying diameters ranging from 100 to 250 nm were fabricated on (100) undoped GaP substrate by nanosphere lithography and dry etching. We observed a strong dependence of the SHG intensity on pillar diameter. Analysis of surface and bulk contributions to SHG from the pillars including the calculations of the electric field profiles and coupling efficiencies is in very good agreement with the experimental data. Complementary measurements of surface optical phonons by Raman spectroscopy are also in agreement with the calculated field intensities at the surface. Finally, polarization of the measured light is used to distinguish between the bulk and surface SHG from GaP nanopillars.


Assuntos
Gálio/química , Nanoestruturas/química , Fósforo/química , Tamanho da Partícula , Propriedades de Superfície
12.
Nano Lett ; 11(11): 4805-11, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21942530

RESUMO

Dense and uniform arrays of InP-based nanopillars were fabricated by dry etching using self-assembly of colloidal silica particles for masking. The pillars, both single and arrays, fabricated from epitaxially grown InP and InP/GaInAsP/InP quantum well structures show excellent photoluminescence (PL) even at room temperature. The measured PL line widths are comparable to the as-grown wafer indicating high quality fabricated pillars. A stamping technique enables transfer with arbitrary densities of the nanopillars freed from the substrate by selectively etching a sacrificial InGaAs layer.


Assuntos
Cristalização/métodos , Índio/química , Medições Luminescentes/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fosfinas/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
Neurol India ; 60(4): 390-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22954974

RESUMO

BACKGROUND: The data on incidence of hypopituitarism after SAH are conflicting. Furthermore, it is still not known whether there is any difference in hormonal deficiencies between SAH due to anterior communicating artery (A-com) and middle cerebral artery (MCA) aneurysms. MATERIALS AND METHODS: This study includes both retrospective and prospective arms. The data collected included baseline demographic profile, clinical severity on admission to the hospital by the Hunt and Hess grading system and World Federation of Neurological Surgeons (WFNS) grading, radiological severity of bleed by the Fisher's classification, and treatment details. All the patients underwent detailed hormonal evaluation at baseline and 6 months in prospective group while at the end of 1 year in the retrospective group. Hormonal deficiencies between patients with A-com and MCA aneurysmal SAH were compared using appropriate statistical tests. RESULTS: Of 60 patients studied, 47 patients (A-com: 28 and MCA: 19) were in the retrospective group, while 13 patients (A-com-9, MCA-4) were in the prospective group. The baseline data were comparable between the two groups. At or after 6 months follow-up, 19 (31.6%) patients, 10 patients with A-com and 9 patients with MCA aneurysmal SAH, had some form of hormone deficiency. Furthermore, there was no difference in endocrine dysfunctions between the two groups. There was no correlation between the severity of hormonal deficiency and the clinical severity of SAH grade by Hunt and Hess and radiological grade of SAH by Fisher's grade. CONCLUSION: Hormonal deficiencies are not uncommon in patients with SAH. There is no difference in hormonal deficiencies and severity of hypopituitarism in patients with SAH due to A-com and MCA bleed.


Assuntos
Aneurisma Intracraniano , Hemorragia Subaracnóidea , Artérias , Humanos , Aneurisma Intracraniano/cirurgia , Estudos Prospectivos , Estudos Retrospectivos , Hemorragia Subaracnóidea/cirurgia , Sobreviventes
14.
Front Plant Sci ; 13: 890647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860538

RESUMO

Classically, vicariant phenomena have been essentially identified on the basis of biogeographical and ecological data. Here, we report unequivocal evidences that demonstrate that a physical-chemical characterization of the epicuticular waxes of the surface of plant leaves represents a very powerful strategy to get rich insight into vicariant events. We found vicariant similarity between Cercis siliquastrum L. (family Fabaceae, subfamily Cercidoideae) and Ceratonia siliqua L. (family Fabaceae, subfamily Caesalpinoideae). Both taxa converge in the Mediterranean basin (C. siliquastrum on the north and C. siliqua across the south), in similar habitats (sclerophyll communities of maquis) and climatic profiles. These species are the current representation of their subfamilies in the Mediterranean basin, where they overlap. Because of this biogeographic and ecological similarity, the environmental pattern of both taxa was found to be very significant. The physical-chemical analysis performed on the epicuticular waxes of C. siliquastrum and C. siliqua leaves provided relevant data that confirm the functional proximity between them. A striking resemblance was found in the epicuticular waxes of the abaxial surfaces of C. siliquastrum and C. siliqua leaves in terms of the dominant chemical compounds (1-triacontanol (C30) and 1-octacosanol (C28), respectively), morphology (intricate network of randomly organized nanometer-thick and micrometer-long plates), wettability (superhydrophobic character, with water contact angle values of 167.5 ± 0.5° and 162 ± 3°, respectively), and optical properties (in both species the light reflectance/absorptance of the abaxial surface is significantly higher/lower than that of the adaxial surface, but the overall trend in reflectance is qualitatively similar). These results enable us to include for the first time C. siliqua in the vicariant process exhibited by C. canadensis L., C. griffithii L., and C. siliquastrum.

15.
Front Plant Sci ; 13: 999252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275521

RESUMO

Arundo donax L. (Arundinoideae subfamily, Poaceae family) is a sub-tropical and temperate climate reed that grows in arid and semi-arid environmental conditions, from eastern China to the Mediterranean basin, suggesting potential adaptations at the epicuticular level. A thorough physical-chemical examination of the adaxial and abaxial surfaces of A. donax leaf was performed herein in an attempt to track such chemophenetic adaptations. This sort of approach is of the utmost importance for the current debate about the hypothetical invasiveness of this species in the Mediterranean basin versus its natural colonization along the Plio-Pleistocene period. We concluded that the leaf surfaces contain, apart from stomata, prickles, and long, thin trichomes, and silicon-rich tetralobate phytolits. Chemically, the dominating elements in the leaf ashes are oxygen and potassium; minor amounts of calcium, silicon, magnesium, phosphorous, sulphur, and chlorine were also detected. In both surfaces the epicuticular waxes (whose density is higher in the adaxial surface than in the abaxial surface) form randomly orientated platelets, with irregular shape and variable size, and aggregated rodlets with variable diameter around the stomata. In the case of green mature leaves, the dominating organic compounds of the epicuticular waxes of both surfaces are triterpenoids. Both surfaces feature identical hydrophobic behaviour, and exhibit the same total transmittance, total reflectance, and absorption of incident light. The above findings suggest easy growth of the plant, remarkable epidermic robustness of the leaf, and control of water loss. These chemophenetic characteristics and human influence support a neolithization process of this species along the Mediterranean basin.

16.
Opt Express ; 19(21): 21074-80, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21997115

RESUMO

Evolution of the mode gap and the associated transmission mini stop-band (MSB) as a function of photonic crystal (PhC) waveguide width is theoretically and experimentally investigated. The change of line-defect width is identified to be the most appropriate way since it offers a wide MSB wavelength tuning range. A high transmission narrow-band filter is experimentally demonstrated in a junction-type waveguide composed of two PhC waveguides with slightly different widths. The full width at half maximum is 5.6 nm; the peak transmission is attenuated by only ~5 dB and is ~20 dB above the MSBs. Additionally, temperature tuning of the filter were also performed. The results show red-shift of the transmission peak and the MSB edges with a gradient of dλ/dT = 0.1 nm/°C. It is proposed that the transmission MSBs in such junction-type cascaded PhC waveguides can be used to obtain different types of filters.

17.
Sci Rep ; 10(1): 12527, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719504

RESUMO

Mie resonator arrays formed by embossing titanium dioxide (TiO2) nanoparticles (NPs) from solution are investigated as optical coatings for anti-reflection applications. Compacted nanoparticle assemblies offer unique possibilities to tailor the effective refractive index (RI). Here, we demonstrate a simple table-top, low pressure, and low temperature method to fabricate structured optical coatings. TiO2 nanostructures in the form of nanodisks support Mie resonances in the visible wavelength spectrum and exhibit strong forward scattering into the high index substrates, making them suitable as broadband anti-reflection coatings for solar cells. TiO2 NP-based nanodisk arrays are designed, fabricated, and characterized regarding their anti-reflection properties on Si, GaAs, and InP substrates and solar cells. Detailed finite-difference time-domain simulations are performed to optimize the TiO2 NP-based Mie resonator arrays for the broadband anti-reflection as well as to explain the measured reflectance spectra. The solar-weighted reflectance is used as a figure of merit (FoM). TiO2 nanodisk arrays on Si show a FoM of ~ 7% in the 400-1,100 nm wavelength spectrum; similar values are obtained for GaAs and InP substrates. TiO2 nanodisk arrays embossed directly on prefabricated planar single-junction Si, GaAs, and InP solar cells result in an appreciable increase (~ 1.3 times) in the short-circuit current densities.

18.
Sci Rep ; 10(1): 22368, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33353978

RESUMO

Color conversion by (tapered) nanowire arrays fabricated in GaInP with bandgap emission in the red spectral region are investigated with blue and green source light LEDs in perspective. GaInP nano- and microstructures, fabricated using top-down pattern transfer methods, are derived from epitaxial Ga0.51In0.49P/GaAs stacks with pre-determined layer thicknesses. Substrate-free GaInP micro- and nanostructures obtained by selectively etching the GaAs sacrificial layers are then embedded in a transparent film to generate stand-alone color converting films for spectrophotometry and photoluminescence experiments. Finite-difference time-domain simulations and spectrophotometry measurements are used to design and validate the GaInP structures embedded in (stand-alone) transparent films for maximum light absorption and color conversion from blue (450 nm) and green (532 nm) to red (~ 660 nm) light, respectively. It is shown that (embedded) 1 µm-high GaInP nanowire arrays can be designed to absorb ~ 100% of 450 nm and 532 nm wavelength incident light. Room-temperature photoluminescence measurements with 405 nm and 532 nm laser excitation are used for proof-of-principle demonstration of color conversion from the embedded GaInP structures. The (tapered) GaInP nanowire arrays, despite very low fill factors (~ 24%), can out-perform the micro-arrays and bulk-like slabs due to a better in- and out-coupling of source and emitted light, respectively.

19.
Nat Commun ; 9(1): 3575, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177701

RESUMO

Owing to their superior optical properties, semiconductor nanopillars/nanowires in one-dimensional (1D) geometry are building blocks for nano-photonics. They also hold potential for efficient polarized spin-light conversion in future spin nano-photonics. Unfortunately, spin generation in 1D systems so far remains inefficient at room temperature. Here we propose an approach that can significantly enhance the radiative efficiency of the electrons with the desired spin while suppressing that with the unwanted spin, which simultaneously ensures strong spin and light polarization. We demonstrate high optical polarization of 20%, inferring high electron spin polarization up to 60% at room temperature in a 1D system based on a GaNAs nanodisk-in-GaAs nanopillar structure, facilitated by spin-dependent recombination via merely 2-3 defects in each nanodisk. Our approach points to a promising direction for realization of an interface for efficient spin-photon quantum information transfer at room temperature-a key element for future spin-photonic applications.

20.
Opt Lett ; 33(17): 1927-9, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18758567

RESUMO

We present the design, fabrication, and measurement of an ultracompact directional coupler in InP/InGaAsP/InP. By utilizing the lag effect in the dry etching process, in one etch step, deeply etched asymmetric waveguides with a shallow groove in between are fabricated. This special property enhances the coupling efficiency for the directional coupler and thus makes the device ultracompact. We demonstrate directional couplers as short as 55 microm, which is only 1/30th the length of the conventional design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA