Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Annu Rev Biochem ; 80: 1089-115, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21417720

RESUMO

To dampen proteotoxic stresses and maintain protein homeostasis, organisms possess a stress-responsive molecular machinery that detects and neutralizes protein damage. A prominent feature of stressed cells is the increased synthesis of heat shock proteins (Hsps) that aid in the refolding of misfolded peptides and restrain protein aggregation. Transcriptional activation of the heat shock response is orchestrated by heat shock factor 1 (HSF1), which rapidly translocates to hsp genes and induces their expression. Although the role of HSF1 in protecting cells and organisms against severe stress insults is well established, many aspects of how HSF1 senses qualitatively and quantitatively different forms of stresses have remained poorly understood. Moreover, recent discoveries that HSF1 controls life span have prompted new ways of thinking about an old transcription factor. Here, we review the established role of HSF1 in counteracting cell stress and prospect the role of HSF1 as a regulator of disease states and aging.


Assuntos
Envelhecimento/fisiologia , Proteínas de Ligação a DNA/metabolismo , Doença , Resposta ao Choque Térmico/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico , Humanos , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Ativação Transcricional
2.
J Biol Chem ; 287(27): 23216-26, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22584572

RESUMO

ErbB4 is a receptor tyrosine kinase implicated in the development and homeostasis of the heart, central nervous system, and mammary gland. Cleavable isoforms of ErbB4 release a soluble intracellular domain (ICD) that can translocate to the nucleus and function as a transcriptional coregulator. In search of regulatory mechanisms of ErbB4 ICD function, we identified PIAS3 as a novel interaction partner of ErbB4 ICD. In keeping with the small ubiquitin-like modifier (SUMO) E3 ligase function of protein inhibitor of activated STAT (PIAS) proteins, we showed that the ErbB4 ICD is modified by SUMO, and that PIAS3 stimulates the SUMOylation. Upon overexpression of PIAS3, the ErbB4 ICD generated from the full-length receptor accumulated into the nucleus in a manner that was dependent on the functional nuclear localization signal of ErbB4. In the nucleus, ErbB4 colocalized with PIAS3 and SUMO-1 in promyelocytic leukemia nuclear bodies, nuclear domains involved in regulation of transcription. Accordingly, PIAS3 overexpression had an effect on the transcriptional coregulatory activity of ErbB4, repressing its ability to coactivate transcription with Yes-associated protein. Finally, knockdown of PIAS3 with siRNA partially rescued the inhibitory effect of the ErbB4 ICD on differentiation of MDA-MB-468 breast cancer and HC11 mammary epithelial cells. Our findings illustrate that PIAS3 is a novel regulator of ErbB4 receptor tyrosine kinase, controlling its nuclear sequestration and function.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Receptores ErbB/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Sumoilação/fisiologia , Animais , Neoplasias da Mama , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Receptores ErbB/química , Receptores ErbB/genética , Feminino , Células HEK293 , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/metabolismo , Chaperonas Moleculares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Proteína da Leucemia Promielocítica , Proteínas Inibidoras de STAT Ativados/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estrutura Terciária de Proteína/fisiologia , RNA Interferente Pequeno/genética , Receptor ErbB-4 , Transdução de Sinais/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
Mol Cell Biol ; 26(3): 955-64, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16428449

RESUMO

Covalent modification of proteins by the small ubiquitin-related modifier SUMO regulates diverse biological functions. Sumoylation usually requires a consensus tetrapeptide, through which the binding of the SUMO-conjugating enzyme Ubc9 to the target protein is directed. However, additional specificity determinants are in many cases required. To gain insights into SUMO substrate selection, we have utilized the differential sumoylation of highly similar loop structures within the DNA-binding domains of heat shock transcription factor 1 (HSF1) and HSF2. Site-specific mutagenesis in combination with molecular modeling revealed that the sumoylation specificity is determined by several amino acids near the consensus site, which are likely to present the SUMO consensus motif to Ubc9. Importantly, we also demonstrate that sumoylation of the HSF2 loop impedes HSF2 DNA-binding activity, without affecting its oligomerization. Hence, SUMO modification of the HSF2 loop contributes to HSF-specific regulation of DNA binding and broadens the concept of sumoylation in the negative regulation of gene expression.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Sequência Conservada , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Humanos , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição/genética , Transfecção , Enzimas de Conjugação de Ubiquitina/metabolismo
4.
Adv Exp Med Biol ; 594: 78-88, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17205677

RESUMO

The transition from normal growth conditions to stressful conditions is accompanied by a robust upregulation of heat shock proteins, which dampen the cytotoxicity caused by misfolded and denatured proteins. The most prominent part of this transition occurs on the transcriptional level. In mammals, protein-damaging stress leads to the activation of heat shock factor 1 (HSF1), which binds to upstream regulatory sequences in the promoters of heat shock genes. The activation of HSF1 proceeds through a multi-step pathway, involving a monomer-to-trimer transition, nuclear accumulation and extensive posttranslational modifications. In addition to its established role as the main regulator of heat shock genes, new data link HSF 1 to developmental pathways. In this chapter, we examine the established stress-related functions and prospect the intriguing role of HSF 1 as a developmental coordinator.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ativação Transcricional
5.
PLoS One ; 10(1): e0117076, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25607801

RESUMO

Ubiquitin signaling mechanisms play fundamental roles in the cell-intrinsic control of neuronal morphogenesis and connectivity in the brain. However, whereas specific ubiquitin ligases have been implicated in key steps of neural circuit assembly, the roles of ubiquitin-specific proteases (USPs) in the establishment of neuronal connectivity have remained unexplored. Here, we report a comprehensive analysis of USP family members in granule neuron morphogenesis and positioning in the rodent cerebellum. We identify a set of 32 USPs that are expressed in granule neurons. We also characterize the subcellular localization of the 32 USPs in granule neurons using a library of expression plasmids encoding GFP-USPs. In RNAi screens of the 32 neuronally expressed USPs, we uncover novel functions for USP1, USP4, and USP20 in the morphogenesis of granule neuron dendrites and axons and we identify a requirement for USP30 and USP33 in granule neuron migration in the rodent cerebellar cortex in vivo. These studies reveal that specific USPs with distinct spatial localizations harbor key functions in the control of neuronal morphogenesis and positioning in the mammalian cerebellum, with important implications for our understanding of the cell-intrinsic mechanisms that govern neural circuit assembly in the brain.


Assuntos
Axônios/metabolismo , Cerebelo/crescimento & desenvolvimento , Dendritos/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Células Cultivadas , Cerebelo/citologia , Cerebelo/enzimologia , Morfogênese , Ratos , Transdução de Sinais , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética
6.
Cell Rep ; 4(1): 19-30, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23831032

RESUMO

Proteasomes drive the selective degradation of protein substrates with covalently linked ubiquitin chains in eukaryotes. Although proteasomes are distributed throughout the cell, specific biological functions of the proteasome in distinct subcellular locales remain largely unknown. We report that proteasomes localized at the centrosome regulate the degradation of local ubiquitin conjugates in mammalian neurons. We find that the proteasomal subunit S5a/Rpn10, a ubiquitin receptor that selects substrates for degradation, is essential for proteasomal activity at centrosomes in neurons and thereby promotes the elaboration of dendrite arbors in the rodent brain in vivo. We also find that the helix-loop-helix protein Id1 disrupts the interaction of S5a/Rpn10 with the proteasomal lid and thereby inhibits centrosomal proteasome activity and dendrite elaboration in neurons. Together, our findings define a function for a specific pool of proteasomes at the neuronal centrosome and identify a biological function for S5a/Rpn10 in the mammalian brain.


Assuntos
Encéfalo/metabolismo , Centrossomo/metabolismo , Dendritos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Encéfalo/citologia , Dendritos/ultraestrutura , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Ratos
7.
Neuron ; 78(6): 986-93, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23791194

RESUMO

Intellectual disability is a prevalent disorder that remains incurable. Mutations of the X-linked protein PHF6 cause the intellectual disability disorder Börjeson-Forssman-Lehmann syndrome (BFLS). However, the biological role of PHF6 relevant to BFLS pathogenesis has remained unknown. We report that knockdown of PHF6 profoundly impairs neuronal migration in the mouse cerebral cortex in vivo, leading to the formation of white matter heterotopias displaying neuronal hyperexcitability. We find that PHF6 physically associates with the PAF1 transcription elongation complex, and inhibition of PAF1 phenocopies the PHF6 knockdown-induced migration phenotype in vivo. We also identify Neuroglycan C/Chondroitin sulfate proteoglycan 5 (NGC/CSPG5), a potential schizophrenia susceptibility gene, as a critical downstream target of PHF6 in the control of neuronal migration. These findings define PHF6, PAF1, and NGC/CSPG5 as components of a cell-intrinsic transcriptional pathway that orchestrates neuronal migration in the brain, with important implications for the pathogenesis of developmental disorders of cognition.


Assuntos
Proteínas de Transporte/genética , Movimento Celular/fisiologia , Genes Ligados ao Cromossomo X/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Neurônios/fisiologia , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Proteínas de Transporte/metabolismo , Feminino , Técnicas de Silenciamento de Genes/métodos , Proteínas de Homeodomínio/metabolismo , Camundongos , Gravidez , Ligação Proteica/fisiologia , Ratos , Proteínas Repressoras
8.
Mol Biol Cell ; 23(21): 4323-32, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22933572

RESUMO

The AP-1 transcription factor c-Jun has been shown to be essential for stress-induced apoptosis in several models. However, the molecular mechanisms underlying the proapoptotic activity of c-Jun are poorly understood. We identify the apoptosis-antagonizing transcription factor (AATF) as a novel nucleolar stress sensor, which is required as a cofactor for c-Jun-mediated apoptosis. Overexpression or down-regulation of AATF expression levels led to a respective increase or decrease in the amount of activated and phosphorylated c-Jun with a proportional alteration in the induction levels of the proapoptotic c-Jun target genes FasL and TNF-α. Accordingly, AATF promoted commitment of ultraviolet (UV)-irradiated cells to c-Jun-dependent apoptosis. Whereas AATF overexpression potentiated UV-induced apoptosis in wild-type cells, c-Jun-deficient mouse embryonic fibroblasts were resistant to AATF-mediated apoptosis induction. Furthermore, AATF mutants defective in c-Jun binding were also defective in inducing AP-1 activity and c-Jun-mediated apoptosis. UV irradiation induced a translocation of AATF from the nucleolus to the nucleus, thereby enabling its physical association to c-Jun. Analysis of AATF deletion mutants revealed that the AATF domains required for compartmentalization, c-Jun binding, and enhancement of c-Jun transcriptional activity were all also required to induce c-Jun-dependent apoptosis. These results identify AATF as a nucleolar-confined c-Jun cofactor whose expression levels and spatial distribution determine the stress-induced activity of c-Jun and the levels of c-Jun-mediated apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Repressoras/metabolismo , Animais , Apoptose/efeitos da radiação , Proteínas Reguladoras de Apoptose/química , Nucléolo Celular/efeitos da radiação , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas Nucleares/química , Ligação Proteica/efeitos da radiação , Estrutura Terciária de Proteína , Transporte Proteico/efeitos da radiação , Proteínas Repressoras/química , Raios Ultravioleta
9.
Science ; 323(5917): 1063-6, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19229036

RESUMO

Heat shock factor 1 (HSF1) is essential for protecting cells from protein-damaging stress associated with misfolded proteins and regulates the insulin-signaling pathway and aging. Here, we show that human HSF1 is inducibly acetylated at a critical residue that negatively regulates DNA binding activity. Activation of the deacetylase and longevity factor SIRT1 prolonged HSF1 binding to the heat shock promoter Hsp70 by maintaining HSF1 in a deacetylated, DNA-binding competent state. Conversely, down-regulation of SIRT1 accelerated the attenuation of the heat shock response (HSR) and release of HSF1 from its cognate promoter elements. These results provide a mechanistic basis for the requirement of HSF1 in the regulation of life span and establish a role for SIRT1 in protein homeostasis and the HSR.


Assuntos
Senescência Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico , Regiões Promotoras Genéticas , Sirtuínas/metabolismo , Estresse Psicológico , Fatores de Transcrição/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Imunoprecipitação da Cromatina , DNA/metabolismo , Regulação para Baixo , Células HeLa , Fatores de Transcrição de Choque Térmico , Homeostase , Humanos , Camundongos , Dados de Sequência Molecular , RNA Interferente Pequeno , Sirtuína 1 , Sirtuínas/genética , Transfecção
10.
Proc Natl Acad Sci U S A ; 103(1): 45-50, 2006 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-16371476

RESUMO

SUMO (small ubiquitin-like modifier) modification regulates many cellular processes, including transcription. Although sumoylation often occurs on specific lysines within the consensus tetrapeptide PsiKxE, other modifications, such as phosphorylation, may regulate the sumoylation of a substrate. We have discovered PDSM (phosphorylation-dependent sumoylation motif), composed of a SUMO consensus site and an adjacent proline-directed phosphorylation site (PsiKxExxSP). The highly conserved motif regulates phosphorylation-dependent sumoylation of multiple substrates, such as heat-shock factors (HSFs), GATA-1, and myocyte enhancer factor 2. In fact, the majority of the PDSM-containing proteins are transcriptional regulators. Within the HSF family, PDSM is conserved between two functionally distinct members, HSF1 and HSF4b, whose transactivation capacities are repressed through the phosphorylation-dependent sumoylation. As the first recurrent sumoylation determinant beyond the consensus tetrapeptide, the PDSM provides a valuable tool in predicting new SUMO substrates.


Assuntos
Motivos de Aminoácidos/genética , Sequência Consenso/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Western Blotting , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Imunoprecipitação , Luciferases , Fosforilação , Elementos Reguladores de Transcrição/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA