RESUMO
'Candidatus Liberibacter asiaticus' (Las) is an emergent bacterial pathogen that is associated with the devastating citrus huanglongbing (HLB). Vectored by the Asian citrus psyllid, Las colonizes the phloem tissue of citrus, causing severe damage to infected trees. So far, cultivating pure Las culture in axenic media has not been successful, and dual-transcriptome analyses aiming to profile gene expression in both Las and its hosts have a low coverage of the Las genome because of the low abundance of bacterial RNA in total RNA extracts from infected tissues. Therefore, a lack of understanding of the Las transcriptome remains a significant knowledge gap. Here, we used a bacterial cell enrichment procedure and confidently determined the expression profiles of approximately 84% of the Las genes. Genes that exhibited high expression in citrus include transporters, ferritin, outer membrane porins, specific pilins, and genes involved in phage-related functions, cell wall modification, and stress responses. We also found 106 genes to be differentially expressed in citrus versus Asian citrus psyllids. Genes related to transcription or translation and resilience to host defense response were upregulated in citrus, whereas genes involved in energy generation and the flagella system were expressed to higher levels in psyllids. Finally, we determined the relative expression levels of potential Sec-dependent effectors, which are considered as key virulence factors of Las. This work advances our understanding of HLB biology and offers novel insight into the interactions of Las with its plant host and insect vector.
Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Perfilação da Expressão Gênica , Liberibacter , Doenças das Plantas , Rhizobiaceae/genéticaRESUMO
Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.
Assuntos
Citrus/enzimologia , Citrus/microbiologia , Progressão da Doença , Peroxidases/metabolismo , Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/metabolismo , Proteômica , Serina Proteases/metabolismo , Citrus/efeitos dos fármacos , Citrus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Peroxidases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/microbiologia , Inibidores de Proteases/farmacologia , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Phytophthora-induced foot rot, also known as gummosis, is an important disease affecting citrus production worldwide. In Texas, the third-largest citrus-producing state in the United States, limited information is available on the etiology and epidemiology of foot rot in commercial orchards. This study comprises a survey of foot rot incidence and severity in Texas and the characterization of Phytophthora isolates associated with the disease. Surveys in 2015 and 2017 of 30 orchards in the Lower Rio Grande Valley (LRGV) region where commercial citrus production is concentrated in the state revealed that foot rot occurred in 97% of the orchards assessed. Overall, foot rot symptoms were observed on 33.7% of the trees evaluated and the disease severity index in the region was rated at 14.2 and 16.5% in 2015 and 2017, respectively. Lesions were mostly present on the scion, while the rootstock (sour orange) was not affected. Phytophthora nicotianae was the only Phytophthora sp. isolated from the surveyed orchards and from five additional residential sites on the Texas Coastal Bend (TCB). Sporangia and chlamydospores from 34 representative LRGV isolates of P. nicotianae were larger than those of TCB isolates. In both LRGV and TCB, A1 and A2 mating types were present in the same location, albeit the A2 mating type was more prevalent. All isolates were sensitive to mefenoxam (50% inhibition in the presence of mefenoxam [EC50] < 0.5 µg/ml), except for one TCB isolate (EC50 = 143.6 µg/ml). Our research indicates that treatment for Phytophthora foot rot in the region is necessary and, although mefenoxam is still useful, alternating chemistries for resistance management are required.
Assuntos
Citrus , Phytophthora , Incidência , TexasRESUMO
CsrA, an RNA-binding protein, binds to target transcripts and alters their translation or stability. In Erwinia amylovora, CsrA positively regulates the expression of type III secretion system (T3SS), exopolysaccharide amylovoran, and motility. In this study, the global effect of CsrA and its noncoding small RNA (ncsRNA) csrB in E. amylovora was determined by RNA-seq, and potential molecular mechanisms of CsrA-dependent virulence regulation were examined. Transcriptomic analyses under the T3SS-inducing condition revealed that mutation in the csrA gene led to differential expression of more than 20% of genes in the genome. Among them, T3SS genes and those required for cell growth and viability were significantly downregulated. On the other hand, the csrB mutant exhibited significant upregulation of most major virulence genes, suggesting an antagonistic effect of csrB on CsrA targets. Direct interaction between CsrA protein and csrB was further confirmed through the RNA electrophoretic mobility shift assay (REMSA). However, no direct interaction between CsrA and hrpL and hrpS transcripts was detected, suggesting that HrpL and HrpS are not targets of CsrA, whereas three CsrA targets (relA, rcsB, and flhD) were identified and confirmed by REMSA, site-directed mutagenesis, and LacZ reporter gene assays. These findings might partially explain how CsrA positively controls E. amylovora virulence by targeting major regulators at the posttranscriptional level.
Assuntos
Proteínas de Bactérias , Erwinia amylovora , Regulação Bacteriana da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Virulência , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Erwinia amylovora/genética , Erwinia amylovora/patogenicidade , Regulação Bacteriana da Expressão Gênica/genética , Mutação , Proteínas de Ligação a RNA/genética , Transcriptoma , Virulência/genéticaRESUMO
UNLABELLED: The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp(0)) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp(0) and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp(0) and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. IMPORTANCE: The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for the regulation of the T3SS and virulence in plant-pathogenic bacteria. Furthermore, the recovery of an spoT null mutant, which displayed very unique phenotypes, suggested that small proteins containing a single ppGpp hydrolase domain are functional.
Assuntos
Proteínas de Bactérias/metabolismo , Erwinia amylovora/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Guanosina Pentafosfato/metabolismo , Proteínas de Bactérias/genética , Erwinia amylovora/citologia , Erwinia amylovora/genética , Guanosina Tetrafosfato , Mutação , Plasmídeos , Pirofosfatases/genética , Pirofosfatases/metabolismoRESUMO
In Erwinia amylovora, the Rcs phosphorelay system is essential for amylovoran production and virulence. To further understand the role of conserved aspartate residue (D56) in the phosphor receiver (PR) domain and lysine (K180) residue in the function domain of RcsB, amino acid substitutions of RcsB mutant alleles were generated by site-directed mutagenesis and complementation of various rcs mutants were performed. A D56E substitution of RcsB, which mimics the phosphorylation state of RcsB, complemented the rcsB mutant, resulting in increased amylovoran production and gene expression, reduced swarming motility, and restored pathogenicity. In contrast, D56N and K180A or K180Q substitutions of RcsB did not complement the rcsB mutant. Electrophoresis mobility shift assays showed that D56E, but not D56N, K180Q and K180A substitutions of RcsB bound to promoters of amsG and flhD, indicating that both D56 and K180 are required for DNA binding. Interestingly, the RcsBD56E allele could also complement rcsAB, rcsBC and rcsABCD mutants with restored virulence and increased amylovoran production, indicating that RcsB phosphorylation is essential for virulence of E. amylovora. In addition, mutations of T904 and A905, but not phosphorylation mimic mutation of D876 in the PR domain of RcsC, constitutively activate the Rcs system, suggesting that phosphor transfer is required for activating the Rcs system and indicating both A905 and T904 are required for the phosphatase activity of RcsC. Our results demonstrated that RcsB phosphorylation and dephosphorylation, phosphor transfer from RcsC are essential for the function of the Rcs system, and also suggested that constitutive activation of the Rcs system could reduce the fitness of E. amylovora.
Assuntos
Ácido Aspártico/genética , Proteínas de Bactérias/genética , DNA Bacteriano/metabolismo , Erwinia amylovora/genética , Lisina/genética , Polissacarídeos Bacterianos/biossíntese , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Proteínas de Bactérias/metabolismo , Sequência Conservada/genética , Erwinia amylovora/metabolismo , Erwinia amylovora/patogenicidade , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Lisina/metabolismo , Malus/microbiologia , Modelos Genéticos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Óperon , Fosforilação , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Pyrus/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Virulência/genéticaRESUMO
The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.
Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Movimento Celular/fisiologia , Erwinia amylovora/patogenicidade , Glicogênio/metabolismo , Doenças das Plantas/microbiologia , Polissacarídeos Bacterianos/metabolismo , Virulência , DNA Bacteriano/genética , Citometria de Fluxo , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Regulação Bacteriana da Expressão Gênica , Mutação/genética , Doenças das Plantas/genética , Pyrus/química , Pyrus/metabolismo , Pyrus/microbiologiaRESUMO
"Candidatus Liberibacter spp." are insect-vectored, fastidious, and vascular-limited phytopathogens. They are the presumptive causal agents of potato zebra chip, tomato vein clearing, and the devastating citrus greening disease worldwide. There is an urgent need to develop new strategies to control them. In this study, we characterized a dual-specificity serine/tyrosine phosphatase (STP) that is well conserved among thirty-three geographically diverse "Candidatus Liberibacter spp." and strains that infect multiple Solanaceaea and citrus spp. The STP is expressed in infected plant tissues, localized at the plant cytosol and plasma membrane, and interferes with plant cell death responses. We employed an in silico target-based molecular modeling and ligand screen to identify two small molecules with high binding affinity to STP. Efficacy studies demonstrated that the two molecules can inhibit "Candidatus Liberibacter spp." but not unrelated pathogens and confer plant disease tolerance. The inhibitors and strategies are promising means to control "Candidatus Liberibacter spp."
RESUMO
Introduction: Citrus is one of the most important fruit crops worldwide, and the root-associated microbiota can have a profound impact on tree health and growth. Methods: In a collaborative effort, the International Citrus Microbiome Consortium investigated the global citrus root microbiota with samples collected from nine citrus-producing countries across six continents. We analyzed 16S rDNA and ITS2 amplicon sequencing data to identify predominant prokaryotic and fungal taxa in citrus root samples. Comparative analyses were conducted between root-associated microbial communities and those from the corresponding rhizosphere and bulk soil samples. Additionally, genotype-based group-wise comparisons were performed to assess the impact of citrus genotype on root microbiota composition. Results: Ten predominant prokaryotic phyla, containing nine bacterial phyla including Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes and one archaeal phylum (Thaumarchaeota), and multiple fungal phyla including Ascomycota and Basidiomycota were identified in the citrus root samples. Compared with the microbial communities from the corresponding rhizosphere and bulk soil samples from the same trees, the prokaryotic and fungal communities in the roots exhibited lower diversity and complexity but greater modularity compared to those in the rhizosphere. In total, 30 root-enriched and 150 root-depleted genera in bacterial community were identified, whereas 21 fungal genera were enriched, and 147 fungal genera were depleted in the root niche compared with the rhizosphere. The citrus genotype significantly affected the root prokaryotic and fungal communities. In addition, we have identified the core root prokaryotic genera comprising Acidibacter, Allorhizobium, Bradyrhizobium, Chitinophaga, Cupriavidus, Devosia, Dongia, Niastella, Pseudomonas, Sphingobium, Steroidobacter and Streptomyces, and the core fungal genera including Acrocalymma, Cladosporium, Fusarium, Gibberella, Mortierella, Neocosmospora and Volutella. The potential functions of these core genera of root microbiota were predicted. Conclusion: Overall, this study provides new insights into the assembly of microbial communities and identifies core members of citrus root microbiota across a wide geographic range. The findings offer valuable information for manipulating root microbiota to enhance plant growth and health.
RESUMO
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.
RESUMO
Potato zebra chip (ZC) disease, associated with the uncultured phloem-limited bacterium, Candidatus Liberibacter solanacearum (CLso), is transmitted by the potato psyllid Bactericera cockerelli. Potato ZC disease poses a significant threat to potato production worldwide. Current management practices mainly rely on the control of the psyllid to limit the spread of CLso. The present study investigated new sources of ZC resistance among wild Solanum species. A taxonomically diverse collection of tuber-bearing Solanum species was screened; one ZC-resistant accession and three ZC-tolerant accessions were identified among the 52 screened accessions. Further characterization of the resistant accession showed that the resistance was primarily associated with antibiosis effects due to differences in leaf trichome density and morphology of the wild accession, which could limit the psyllid feeding and oviposition. This germplasm offers a good resource for further understanding ZC and psyllid resistance mechanisms, contributing to potato breeding efforts to develop ZC resistance cultivars. Alternatively, it could be used as a potential trap crop to manage psyllid and control ZC disease.
RESUMO
Potato (Solanum tuberosum L.) is an important food crop worldwide. As the demand for fresh and processed potato products is increasing globally, there is a need to manage and control devastating diseases such as zebra chip (ZC). ZC disease causes major yield losses in many potato-growing regions and is associated with the fastidious, phloem-limited bacterium Candidatus Liberibacter solanacearum (CLso) that is vectored by the potato-tomato psyllid (Bactericera cockerelli Sulc). Current management measures for ZC disease mainly focus on chemical control and integrated pest management strategies of the psyllid vector to limit the spread of CLso, however, they add to the costs of potato production. Identification and deployment of CLso and/or the psyllid resistant cultivars, in combination with integrated pest management, may provide a sustainable long-term strategy to control ZC. In this review, we provide a brief overview of the ZC disease, epidemiology, current management strategies, and potential new approaches to manage ZC disease in the future.
RESUMO
Brucella species are facultative intracellular bacterial pathogens that cause brucellosis, a global zoonosis of profound importance. Although recent studies have demonstrated that Brucella spp. replicate within an intracellular compartment that contains endoplasmic reticulum (ER) resident proteins, the molecular mechanisms by which the pathogen secures this replicative niche remain obscure. Here, we address this issue by exploiting Drosophila S2 cells and RNA interference (RNAi) technology to develop a genetically tractable system that recapitulates critical aspects of mammalian cell infection. After validating this system by demonstrating a shared requirement for phosphoinositide 3-kinase (PI3K) activities in supporting Brucella infection in both host cell systems, we performed an RNAi screen of 240 genes, including 110 ER-associated genes, for molecules that mediate bacterial interactions with the ER. We uncovered 52 evolutionarily conserved host factors that, when depleted, inhibited or increased Brucella infection. Strikingly, 29 of these factors had not been previously suggested to support bacterial infection of host cells. The most intriguing of these was inositol-requiring enzyme 1 (IRE1), a transmembrane kinase that regulates the eukaryotic unfolded protein response (UPR). We employed IRE1alpha(-/-) murine embryonic fibroblasts (MEFs) to demonstrate a role for this protein in supporting Brucella infection of mammalian cells, and thereby, validated the utility of the Drosophila S2 cell system for uncovering novel Brucella host factors. Finally, we propose a model in which IRE1alpha, and other ER-associated genes uncovered in our screen, mediate Brucella replication by promoting autophagosome biogenesis.
Assuntos
Brucella abortus/fisiologia , Retículo Endoplasmático/metabolismo , Endorribonucleases/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Serina-Treonina Quinases/fisiologia , Interferência de RNA , Animais , Brucella abortus/patogenicidade , Retículo Endoplasmático/genética , Retículo Endoplasmático/microbiologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Testes Genéticos , Células HeLa/metabolismo , Células HeLa/microbiologia , Humanos , Proteínas Sensoras de Cálcio Intracelular , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Transcrição GênicaRESUMO
Citrus huanglongbing (HLB) is a devastating disease for the citrus industry. The previous studies demonstrated that oxytetracycline and penicillin are effective antibiotics against Candidatus Liberibacter asiaticus (CLas). However, since CLas is uncultured, the mechanisms of action of antibiotics against CLas are still unclear. It was recently reported that the endophytic microbial communities are associated with the progression of citrus HLB after oxytetracycline and penicillin treatment. Therefore, we hypothesize that penicillin has greater antibacterial activity against CLas than oxytetracycline, which may be associated with the alteration of the structure and function of endophytic microbial communities in HLB-affected citrus in response to these antibiotics. To test this hypothesis, the microbiome of HLB-affected citrus leaves treated with these two antibiotics was analyzed using a metagenomic method. Our results indicate that the microbial structure and function in HLB-affected citrus were altered by these two antibiotics. The relative abundance of beneficial bacterial species, including Streptomyces avermitilis and Bradyrhizobium, was higher in penicillin-treated plants compared to those treated with oxytetracycline, and the relative abundance of the bacterial species (such as Propionibacterium acnes and Synechocystis sp PCC 6803) associated with CLas survival was lower for penicillin-treated plants compared to oxytetracycline-treated plants. These results indicate that penicillin has greater antibacterial activity against CLas. Based on the metagenomic analysis, this study elucidated the mechanism for the observed increase in antibacterial activity of penicillin against CLas. The data presented here are not only invaluable for developing eco-friendly and effective biocontrol strategies to combat citrus HLB, but also provide a method for revealing mechanism of antimicrobial against uncultured bacteria in host.
RESUMO
'Candidatus Liberibacter' species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from 'Candidatus Liberibacter asiaticus' (Las). In order to gain greater insight into 'Ca. Liberibacter' biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse 'Ca. Liberibacter' species, including those that can infect citrus. Our phylogenetic analysis differentiates 'Ca. Liberibacter' species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic 'Ca. Liberibacter' species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of 'Ca. Liberibacter' species, the introduction of Las in the United States and identifies promising Las targets for disease management.
Assuntos
Citrus/microbiologia , Estudo de Associação Genômica Ampla/métodos , Doenças das Plantas/microbiologia , Filogenia , RhizobiaceaeRESUMO
Lon, an ATP-dependent protease in bacteria, influences diverse cellular processes by degrading damaged, misfolded and short-lived regulatory proteins. In this study, we characterized the effects of lon mutation and determined the molecular mechanisms underlying Lon-mediated virulence regulation in Erwinia amylovora, an enterobacterial pathogen of apple. Erwinia amylovora depends on the type III secretion system (T3SS) and the exopolysaccharide (EPS) amylovoran to cause disease. Our results showed that mutation of the lon gene led to the overproduction of amylovoran, increased T3SS gene expression and the non-motile phenotype. Western blot analyses showed that mutation in lon directly affected the accumulation and stability of HrpS/HrpA and RcsA. Mutation in lon also indirectly influenced the expression of flhD, hrpS and csrB through the accumulation of the RcsA/RcsB proteins, which bind to the promoter of these genes. In addition, lon expression is under the control of CsrA, possibly at both the transcriptional and post-transcriptional levels. Although mutation in csrA abolished both T3SS and amylovoran production, deletion of the lon gene in the csrA mutant only rescued amylovoran production, but not T3SS. These results suggest that CsrA might positively control both T3SS and amylovoran production partly by suppressing Lon, whereas CsrA may also play a critical role in T3SS by affecting unknown targets.
Assuntos
Proteínas de Bactérias/metabolismo , Erwinia amylovora/patogenicidade , Protease La/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Mutação/genética , Protease La/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência/genéticaRESUMO
The citrus industry is facing an unprecedented challenge from Huanglongbing (HLB). All cultivars can be affected by the HLB-associated bacterium 'Candidatus Liberibacter asiaticus' (CLas) and there is no known resistance. Insight into HLB pathogenesis is urgently needed in order to develop effective management strategies. Here, we use Sec-delivered effector 1 (SDE1), which is conserved in all CLas isolates, as a molecular probe to understand CLas virulence. We show that SDE1 directly interacts with citrus papain-like cysteine proteases (PLCPs) and inhibits protease activity. PLCPs are defense-inducible and exhibit increased protein accumulation in CLas-infected trees, suggesting a role in citrus defense responses. We analyzed PLCP activity in field samples, revealing specific members that increase in abundance but remain unchanged in activity during infection. SDE1-expressing transgenic citrus also exhibit reduced PLCP activity. These data demonstrate that SDE1 inhibits citrus PLCPs, which are immune-related proteases that enhance defense responses in plants.
Assuntos
Citrus/microbiologia , Cisteína Proteases/genética , Inibidores de Cisteína Proteinase/metabolismo , Evasão da Resposta Imune , Doenças das Plantas/microbiologia , Proteínas de Plantas/antagonistas & inibidores , Rhizobiaceae/patogenicidade , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Citrus/classificação , Citrus/genética , Citrus/imunologia , Cisteína Proteases/imunologia , Inibidores de Cisteína Proteinase/química , Regulação da Expressão Gênica , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Rhizobiaceae/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genéticaRESUMO
Citrus is a globally important, perennial fruit crop whose rhizosphere microbiome is thought to play an important role in promoting citrus growth and health. Here, we report a comprehensive analysis of the structural and functional composition of the citrus rhizosphere microbiome. We use both amplicon and deep shotgun metagenomic sequencing of bulk soil and rhizosphere samples collected across distinct biogeographical regions from six continents. Predominant taxa include Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes. The core citrus rhizosphere microbiome comprises Pseudomonas, Agrobacterium, Cupriavidus, Bradyrhizobium, Rhizobium, Mesorhizobium, Burkholderia, Cellvibrio, Sphingomonas, Variovorax and Paraburkholderia, some of which are potential plant beneficial microbes. We also identify over-represented microbial functional traits mediating plant-microbe and microbe-microbe interactions, nutrition acquisition and plant growth promotion in citrus rhizosphere. The results provide valuable information to guide microbial isolation and culturing and, potentially, to harness the power of the microbiome to improve plant production and health.
Assuntos
Citrus/microbiologia , Microbiota/genética , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , DNA Espaçador Ribossômico/genética , Fungos/classificação , Fungos/genética , Metagenoma/genética , Metagenômica/classificação , Metagenômica/métodos , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
The citrus industry is facing an unprecedented crisis due to Huanglongbing (HLB, aka citrus greening disease), a bacterial disease associated with the pathogen Candidatus Liberibacter asiaticus (CLas) that affects all commercial varieties. Transmitted by the Asian citrus psyllid (ACP), CLas colonizes citrus phloem, leading to reduced yield and fruit quality, and eventually tree decline and death. Since adequate curative measures are not available, a key step in HLB management is to restrict the spread of the disease by identifying infected trees and removing them in a timely manner. However, uneven distribution of CLas cells in infected trees and the long latency for disease symptom development makes sampling of trees for CLas detection challenging. Here, we report that a CLas secreted protein can be used as a biomarker for detecting HLB infected citrus. Proteins secreted from CLas cells can presumably move along the phloem, beyond the site of ACP inoculation and CLas colonized plant cells, thereby increasing the chance of detecting infected trees. We generated a polyclonal antibody that effectively binds to the secreted protein and developed serological assays that can successfully detect CLas infection. This work demonstrates that antibody-based diagnosis using a CLas secreted protein as the detection marker for infected trees offers a high-throughput and economic approach that complements the approved quantitative polymerase chain reaction-based methods to enhance HLB management programs.
RESUMO
The GacS/GacA two-component system (also called GrrS/GrrA) is a global regulatory system which is highly conserved among gamma-proteobacteria. This system positively regulates non-coding small regulatory RNA csrB, which in turn binds to the RNA-binding protein CsrA. However, how GacS/GacA-Csr system regulates virulence traits in E. amylovora remains unknown. Results from mutant characterization showed that the csrB mutant was hypermotile, produced higher amount of exopolysaccharide amylovoran, and had increased expression of type III secretion (T3SS) genes in vitro. In contrast, the csrA mutant exhibited complete opposite phenotypes, including non-motile, reduced amylovoran production and expression of T3SS genes. Furthermore, the csrA mutant did not induce hypersensitive response on tobacco or cause disease on immature pear fruits, indicating that CsrA is a positive regulator of virulence factors. These findings demonstrated that CsrA plays a critical role in E. amylovora virulence and suggested that negative regulation of virulence by GacS/GacA acts through csrB sRNA, which binds to CsrA and neutralizes its positive effect on T3SS gene expression, flagellar formation and amylovoran production. Future research will be focused on determining the molecular mechanism underlying the positive regulation of virulence traits by CsrA.