Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 340: 117972, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37126921

RESUMO

The degradation of ecosystems and their services is threatening human wellbeing, making ecosystem service (ES) conservation an urgent necessity. In ES conservation planning, conservation area identification is crucial for the success of conservation initiatives. However, different decision-making preferences have not been fully considered and integrated in ES conservation area identification. This study takes the Dawen River watershed as the study area and considers three water-related ESs to be conserved. We aim to integrate the decision-making preferences of cost-effectiveness, ES sustainable supply, and ES social benefit into identifying ES conservation areas by using conservation cost, ecosystem health, and ES social importance as spatial constraints, respectively. We identified ES conservation area alternatives under the scenarios set according to different decision-making preferences. Specifically, ES conservation targets, i.e., the expected proportion of each ES in conservation areas, are designed to be met where there is low conservation cost (cost-oriented scenario), high ecosystem health (ES sustainable supply scenario), or high ES social importance (ES social benefit scenario). A balanced scenario considering all three decision-making preferences together is further established. The results show that under each scenario, the identified conservation areas can concurrently meet the conservation targets and decision-making preferences. The consideration of different decision-making preferences can greatly influence the spatial distributions of ES conservation areas. Moreover, a severe trade-off between conservation cost and ES social importance is observed under the ES social benefit scenario, and the balanced scenario can achieve a synergy of decision-making preferences. Our study provides a method to integrate the decision-making preference into ES conservation area identification, which can improve the rationality and practicality of ES conservation planning.


Assuntos
Ecossistema , Rios , Humanos , Água , Conservação dos Recursos Naturais/métodos , China
2.
J Environ Manage ; 305: 114371, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953229

RESUMO

Regional integration can contribute to co-occurring benefits of different parts of an urban agglomeration by managing these parts as a whole. However, current regional integration mainly focuses on the socioeconomic rather than the ecological dimension. To interpret regional ecological integration, we firstly selected six typical ecosystem services (ESs) to represent ecological benefits that potentially need to be improved by ecological integration for further analysis. Then we used ES budgets, bundles, and flows to investigate the potential, basic analysis unit, and occurring manners of ecological integration, respectively. Our results show that supply-demand mismatches were observed in all the ES types. Meanwhile, coexisting ES surpluses and deficits on the town scale were found in supporting biodiversity, soil retention, water yield, green space recreation, and crop yield, which indicates that their supply-demand mismatches can be mitigated with ecological integration. Furthermore, all the towns were classified into five spatial clusters with distinct ES budget bundles, which acted as the basic analysis unit of ecological integration. ES flows with three flow characteristic types were observed between different clusters, and all the clusters had ES provider-beneficiary relationships with each other. Based on the ES approach, we provided an ecological perspective for understanding regional integration, which has the potential to promote regional ecological sustainability.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , China , Cidades
3.
J Environ Manage ; 246: 679-686, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31220728

RESUMO

Regulation of nitrate emission from agriculture to aquatic environments in Denmark currently depend on general rules for nutrient application and associated farm-level reporting schemes. Similar or comparable centralized regulation instruments dedicated to controlling and limiting rather than focusing and improving N application practices exist in large parts of the OECD. Recent policy debates have exposed an array of problems relating to this type of regulation. Problems include issues of appropriate scale, transparency and failures to adapt intervention and regulation to relevant geo-ecological variations in contexts where general rules are being imposed on varied agro-ecosystems. Therefore it has been proposed to rescale regulation to better fit relevant socio-political and agro-environmental processes including the scale of farmers' decision making, the scale of relevant hydrological systems and the scale of key agro-ecological conditions such as soil characteristics and drainage. However, the challenge of shifting the regulation to a more local scale raises a number of questions. These include (1) How information produced locally can be integrated with national scale data? (2) In what way integrated datasets can used to model environmental effects of current and possible land use patterns? (3) In what way data and estimates of consequences of land use changes are best made available in decision making processes? To address these questions this article reports on ongoing work in Denmark to develop a decision support tool for N-management at the scale of agricultural landscapes, which are areas where a similar pattern of land use is repeated across the land surface, reflecting a specific mode of adapting agriculture to natural conditions. The aim of the article is to evaluate the design of a decision support tool aiming at enabling strategic N-management at landscape scales by linking decision support at the scale of individual farms with decision support targeted at groups of farms where a coordinated effort to solve common problems may be more efficient. Design targets for the tool were established empirically based on evidence from exploratory workshops with farmers and other stakeholders in 6 case areas across Denmark. On this basis a prototype GIS-tool for capturing, storing, editing, displaying and modelling landscape scale farming practices and associated emission consequences was developed. The tool was designed to integrate locally held knowledge with national scale datasets in live scenario situations through the implementation of a flexible, uniform and editable data model for land use data - the dNmark landscape model. Based on input data that is corrected and co-authored by workshop participants, the tool estimates the effect of potential land use scenarios on nutrient emissions. The tool was tested in 5 scenario workshops in case areas in Denmark in 2016, on the basis of which its design is evaluated and discussed in this article.


Assuntos
Ecossistema , Nitrogênio , Agricultura , Tomada de Decisões , Dinamarca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA