Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 595(7866): 289-294, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194041

RESUMO

The global decline in malaria has stalled1, emphasizing the need for vaccines that induce durable sterilizing immunity. Here we optimized regimens for chemoprophylaxis vaccination (CVac), for which aseptic, purified, cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ) were inoculated under prophylactic cover with pyrimethamine (PYR) (Sanaria PfSPZ-CVac(PYR)) or chloroquine (CQ) (PfSPZ-CVac(CQ))-which kill liver-stage and blood-stage parasites, respectively-and we assessed vaccine efficacy against homologous (that is, the same strain as the vaccine) and heterologous (a different strain) controlled human malaria infection (CHMI) three months after immunization ( https://clinicaltrials.gov/ , NCT02511054 and NCT03083847). We report that a fourfold increase in the dose of PfSPZ-CVac(PYR) from 5.12 × 104 to 2 × 105 PfSPZs transformed a minimal vaccine efficacy (low dose, two out of nine (22.2%) participants protected against homologous CHMI), to a high-level vaccine efficacy with seven out of eight (87.5%) individuals protected against homologous and seven out of nine (77.8%) protected against heterologous CHMI. Increased protection was associated with Vδ2 γδ T cell and antibody responses. At the higher dose, PfSPZ-CVac(CQ) protected six out of six (100%) participants against heterologous CHMI three months after immunization. All homologous (four out of four) and heterologous (eight out of eight) infectivity control participants showed parasitaemia. PfSPZ-CVac(CQ) and PfSPZ-CVac(PYR) induced a durable, sterile vaccine efficacy against a heterologous South American strain of P. falciparum, which has a genome and predicted CD8 T cell immunome that differs more strongly from the African vaccine strain than other analysed African P. falciparum strains.


Assuntos
Anticorpos Neutralizantes/imunologia , Fígado/imunologia , Fígado/parasitologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/imunologia , Vacinas Atenuadas/imunologia , Adulto , Animais , Formação de Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Estágios do Ciclo de Vida/imunologia , Malária/sangue , Malária/imunologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/química , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/crescimento & desenvolvimento , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Vacinação/efeitos adversos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/química
2.
Proc Natl Acad Sci U S A ; 121(18): e2322567121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648472

RESUMO

Degrading cellulose is a key step in the processing of lignocellulosic biomass into bioethanol. Cellobiose, the disaccharide product of cellulose degradation, has been shown to inhibit cellulase activity, but the mechanisms underlying product inhibition are not clear. We combined single-molecule imaging and biochemical investigations with the goal of revealing the mechanism by which cellobiose inhibits the activity of Trichoderma reesei Cel7A, a well-characterized exo-cellulase. We find that cellobiose slows the processive velocity of Cel7A and shortens the distance moved per encounter; effects that can be explained by cellobiose binding to the product release site of the enzyme. Cellobiose also strongly inhibits the binding of Cel7A to immobilized cellulose, with a Ki of 2.1 mM. The isolated catalytic domain (CD) of Cel7A was also inhibited to a similar degree by cellobiose, and binding of an isolated carbohydrate-binding module to cellulose was not inhibited by cellobiose, suggesting that cellobiose acts on the CD alone. Finally, cellopentaose inhibited Cel7A binding at micromolar concentrations without affecting the enzyme's velocity of movement along cellulose. Together, these results suggest that cellobiose inhibits Cel7A activity both by binding to the "back door" product release site to slow activity and to the "front door" substrate-binding tunnel to inhibit interaction with cellulose. These findings point to strategies for engineering cellulases to reduce product inhibition and enhance cellulose degradation, supporting the growth of a sustainable bioeconomy.


Assuntos
Celobiose , Celulase , Celulose , Hypocreales , Celobiose/metabolismo , Celulase/metabolismo , Celulase/antagonistas & inibidores , Celulose/metabolismo , Hypocreales/enzimologia , Hypocreales/metabolismo , Imagem Individual de Molécula/métodos , Domínio Catalítico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química
3.
J Neurosci ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830758

RESUMO

Shank3 is a synaptic scaffolding protein that assists in tethering and organizing structural proteins and glutamatergic receptors in the postsynaptic density of excitatory synapses. The localization of Shank3 at excitatory synapses and the formation of stable Shank3 complexes is regulated by the binding of zinc to the C-terminal sterile-alpha-motif (SAM) domain of Shank3. Mutations in the SAM domain of Shank3 result in altered synaptic function and morphology, and disruption of zinc in synapses that express Shank3 leads to a reduction of postsynaptic proteins important for synaptic structure and function. This suggests that zinc supports the localization of postsynaptic proteins via Shank3. Many regions of the brain are highly enriched with free zinc inside glutamatergic vesicles at presynaptic terminals. At these synapses, zinc transporter 3 (ZnT3) moves zinc into vesicles where it is co-released with glutamate. Alterations in ZnT3 are implicated in multiple neurodevelopmental disorders, and ZnT3 knock-out (KO) mice - which lack synaptic zinc - show behavioral deficits associated with autism spectrum disorder and schizophrenia. Using male and female mice, we show that ZnT3 KO mice have smaller dendritic spines and miniature excitatory postsynaptic current amplitudes than wildtype (WT) mice in the auditory cortex. Additionally, spine size deficits in ZnT3 KO mice are restricted to synapses that express Shank3. In WT mice, synapses that express both Shank3 and ZnT3 have larger spines compared to synapses that express Shank3 but not ZnT3. Together these findings suggest a mechanism whereby presynaptic ZnT3-dependent zinc supports postsynaptic structure and function via Shank3 in a synapse-specific manner.Significance Statement Shank3 is a scaffolding protein that assists in the organization of glutamatergic receptors in the postsynaptic density of excitatory synapses in the brain. The structure and function of Shank3 is regulated by zinc ions. Specifically, zinc allows Shank3 to form tight sheets that assist in stabilizing the postsynaptic density. Zinc packaged by the zinc transporter ZnT3 which is released from presynaptic terminals may contribute to the function of Shank3. In this study, we find an association between ZnT3, Shank3, synaptic strength, and spine size, suggesting that zinc released from presynaptic terminals supports dendritic spine structure and function via interactions with Shank3.

4.
Plant J ; 118(6): 1719-1731, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569066

RESUMO

Stomata are pores at the leaf surface that enable gas exchange and transpiration. The signaling pathways that regulate the differentiation of stomatal guard cells and the mechanisms of stomatal pore formation have been characterized in Arabidopsis thaliana. However, the process by which stomatal complexes develop after pore formation into fully mature complexes is poorly understood. We tracked the morphogenesis of young stomatal complexes over time to establish characteristic geometric milestones along the path of stomatal maturation. Using 3D-nanoindentation coupled with finite element modeling of young and mature stomata, we found that despite having thicker cell walls than young guard cells, mature guard cells are more energy efficient with respect to stomatal opening, potentially attributable to the increased mechanical anisotropy of their cell walls and smaller changes in turgor pressure between the closed and open states. Comparing geometric changes in young and mature guard cells of wild-type and cellulose-deficient plants revealed that although cellulose is required for normal stomatal maturation, mechanical anisotropy appears to be achieved by the collective influence of cellulose and additional wall components. Together, these data elucidate the dynamic geometric and biomechanical mechanisms underlying the development process of stomatal maturation.


Assuntos
Arabidopsis , Parede Celular , Estômatos de Plantas , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Estômatos de Plantas/fisiologia , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/citologia , Anisotropia , Parede Celular/metabolismo , Parede Celular/fisiologia , Celulose/metabolismo , Análise de Elementos Finitos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
5.
Plant Cell ; 34(1): 273-286, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34524465

RESUMO

Confocal imaging has shown that CELLULOSE SYNTHASE (CESA) particles move through the plasma membrane as they synthesize cellulose. However, the resolution limit of confocal microscopy circumscribes what can be discovered about these tiny biosynthetic machines. Here, we applied Structured Illumination Microscopy (SIM), which improves resolution two-fold over confocal or widefield imaging, to explore the dynamic behaviors of CESA particles in living plant cells. SIM imaging reveals that Arabidopsis thaliana CESA particles are more than twice as dense in the plasma membrane as previously estimated, helping explain the dense arrangement of cellulose observed in new wall layers. CESA particles tracked by SIM display minimal variation in velocity, suggesting coordinated control of CESA catalytic activity within single complexes and that CESA complexes might move steadily in tandem to generate larger cellulose fibrils or bundles. SIM data also reveal that CESA particles vary in their overlaps with microtubule tracks and can complete U-turns without changing speed. CESA track patterns can vary widely between neighboring cells of similar shape, implying that cellulose patterning is not the sole determinant of cellular growth anisotropy. Together, these findings highlight SIM as a powerful tool to advance CESA imaging beyond the resolution limit of conventional light microscopy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Celulose , Glucosiltransferases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Celulose/metabolismo , Glucosiltransferases/metabolismo , Microscopia/classificação
6.
Plant Cell ; 34(1): 10-52, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633455

RESUMO

In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.


Assuntos
Membrana Celular/metabolismo , Parede Celular/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Plantas/metabolismo , Organelas/metabolismo , Células Vegetais/metabolismo
7.
Plant Cell ; 34(1): 72-102, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34529074

RESUMO

As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.


Assuntos
Células Vegetais/fisiologia , Fenômenos Fisiológicos Vegetais , Biologia Celular , Desenvolvimento Vegetal
8.
J Allergy Clin Immunol ; 153(3): 821-830.e6, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37951310

RESUMO

BACKGROUND: Episodic angioedema with eosinophilia (EAE) is a rare multilineage cyclic syndrome of unknown etiology characterized by episodes of angioedema, myalgia, fatigue, and fever that occur every 3 to 8 weeks and resolve between episodes without therapy. Cyclic elevations in serum IL-5 levels and neutrophils precede the increase in absolute eosinophil count (AEC) in most patients. OBJECTIVE: We sought to assess the role of IL-5-driven eosinophilia in the clinical manifestations of EAE. METHODS: An open-label pilot study of mepolizumab (700 mg intravenously monthly for 3 months followed by sequential dose reduction to the Food and Drug Administration-approved dose of 300 mg subcutaneously monthly) was conducted. The primary end point was reduction in the number and severity of clinical symptoms as assessed by patient-reported symptom questionnaires. Secondary end points were greater than or equal to 75% reduction in peak AEC after 1 dose of mepolizumab and sustained reduction in AEC after 3 doses of mepolizumab. Exploratory end points included effects of mepolizumab treatment on other cell lineages (numbers and surface marker expression), levels of plasma mediators, and biomarkers of eosinophil activation. RESULTS: Four female and 1 male (median age, 45 years) participants with EAE were enrolled. None of the 5 participants experienced a reduction in the number of symptomatic flares on mepolizumab therapy, and 1 participant withdrew before study completion because of lack of improvement. Peak AEC was reduced by 75% or more in 3 participants after the first dose of mepolizumab and in 4 participants after 3 doses. CONCLUSIONS: In a small cohort of participants with EAE, mepolizumab was unsuccessful in substantially reducing clinical symptoms despite reduction in AEC.


Assuntos
Angioedema , Anticorpos Monoclonais Humanizados , Eosinofilia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Projetos Piloto , Interleucina-5 , Eosinofilia/tratamento farmacológico , Eosinófilos
9.
New Phytol ; 242(2): 524-543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413240

RESUMO

The Poaceae family of plants provides cereal crops that are critical for human and animal nutrition, and also, they are an important source of biomass. Interacting plant cell wall components give rise to recalcitrance to digestion; thus, understanding the wall molecular architecture is important to improve biomass properties. Xylan is the main hemicellulose in grass cell walls. Recently, we reported structural variation in grass xylans, suggesting functional specialisation and distinct interactions with cellulose and lignin. Here, we investigated the functions of these xylans by perturbing the biosynthesis of specific xylan types. We generated CRISPR/Cas9 knockout mutants in Brachypodium distachyon XAX1 and GUX2 genes involved in xylan substitution. Using carbohydrate gel electrophoresis, we identified biochemical changes in different xylan types. Saccharification, cryo-SEM, subcritical water extraction and ssNMR were used to study wall architecture. BdXAX1A and BdGUX2 enzymes modify different types of grass xylan. Brachypodium mutant walls are likely more porous, suggesting the xylan substitutions directed by both BdXAX1A and GUX2 enzymes influence xylan-xylan and/or xylan-lignin interactions. Since xylan substitutions influence wall architecture and digestibility, our findings open new avenues to improve cereals for food and to use grass biomass for feed and the production of bioenergy and biomaterials.


Assuntos
Brachypodium , Xilanos , Animais , Humanos , Xilanos/metabolismo , Lignina/metabolismo , Brachypodium/metabolismo , Parede Celular/metabolismo
10.
Plant Physiol ; 192(4): 3189-3202, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37119276

RESUMO

As photosynthetic organisms, plants have a potential role in the sustainable production of high-value products such as medicines, biofuels, and chemical feedstocks. With effective engineering using synthetic biology approaches, plant-based platforms could conceivably be designed to minimize the costs and waste of production for materials that would otherwise be uneconomical. Additionally, modern agricultural crops could be engineered to be more productive, resilient, or restorative in different or rapidly changing environments and climates. Information-processing genetic devices and circuits containing multiple interacting parts that behave predictably must be developed to achieve these complex goals. A genetic Boolean AND logic gate is a device that computes the presence or absence of 2 inputs (signals and stimuli) and produces an output (response) only when both inputs are present. We optimized individual genetic components and used synthetic protein heterodimerizing domains to rationally assemble genetic AND logic gates that integrate 2 hormonal inputs in transgenic Arabidopsis thaliana plants. These AND gates produce an output only in the presence of both abscisic acid and auxin but not when either or neither hormone is present. The AND logic gate can also integrate signals resulting from 2 plant stresses, cold temperature and bacterial infection, to produce a response. The design principles used here are generalizable, and, therefore, multiple orthogonal AND gates could be assembled and rationally layered to process complex genetic information in plants. These layered logic gates may be used in genetic circuits to probe fundamental questions in plant biology, such as hormonal crosstalk, in addition to plant engineering for bioproduction.


Assuntos
Produtos Agrícolas , Lógica , Biologia Sintética
11.
Plant Cell ; 33(9): 3134-3150, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34109391

RESUMO

Plant cell deformations are driven by cell pressurization and mechanical constraints imposed by the nanoscale architecture of the cell wall, but how these factors are controlled at the genetic and molecular levels to achieve different types of cell deformation is unclear. Here, we used stomatal guard cells to investigate the influences of wall mechanics and turgor pressure on cell deformation and demonstrate that the expression of the pectin-modifying gene PECTATE LYASE LIKE12 (PLL12) is required for normal stomatal dynamics in Arabidopsis thaliana. Using nanoindentation and finite element modeling to simultaneously measure wall modulus and turgor pressure, we found that both values undergo dynamic changes during induced stomatal opening and closure. PLL12 is required for guard cells to maintain normal wall modulus and turgor pressure during stomatal responses to light and to tune the levels of calcium crosslinked pectin in guard cell walls. Guard cell-specific knockdown of PLL12 caused defects in stomatal responses and reduced leaf growth, which were associated with lower cell proliferation but normal cell expansion. Together, these results force us to revise our view of how wall-modifying genes modulate wall mechanics and cell pressurization to accomplish the dynamic cellular deformations that underlie stomatal function and tissue growth in plants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Estômatos de Plantas/fisiologia , Polissacarídeo-Liases/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fenômenos Biomecânicos , Estômatos de Plantas/genética , Polissacarídeo-Liases/genética
12.
Ann Bot ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757189

RESUMO

BACKGROUND: Like all plant cells, the guard cells of stomatal complexes are encased in cell walls that are composed of diverse, interacting networks of polysaccharide polymers. The properties of these cell walls underpin the dynamic deformations that occur in guard cells as they expand and contract to drive the opening and closing of the stomatal pore, the regulation of which is critical for photosynthesis and water transport in plants. SCOPE: Our understanding of how cell wall mechanics are influenced by the nanoscale assembly of cell wall polymers in guard cell walls, how this architecture changes over stomatal development, maturation, and aging, and how the cell walls of stomatal guard cells might be tuned to optimize stomatal responses to dynamic environmental stimuli is still in its infancy. CONCLUSION: In this review, we discuss advances in our ability to experimentally probe and quantitatively model the structure and dynamics of guard cell walls across a range of plant species, highlighting new ideas and exciting opportunities for further research into these actively moving plant cells.

13.
Biochem Biophys Res Commun ; 654: 80-86, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36898227

RESUMO

Living cells constantly monitor their external and internal environments for changing conditions, stresses or developmental cues. Networks of genetically encoded components sense and process these signals following pre-defined rules in such a way that specific combinations of the presence or absence of certain signals activate suitable responses. Many biological signal integration mechanisms approximate Boolean logic operations, whereby presence or absence of signals are computed as variables with values described as either true or false, respectively. Boolean logic gates are commonly used in algebra and in computer sciences, and have long been recognized as useful information processing devices in electronic circuits. In these circuits, logic gates integrate multiple input values and produce an output signal according to pre-defined Boolean logic operations. Recent implementation of these logic operations using genetic components to process information in living cells has allowed genetic circuits to enable novel traits with decision-making capabilities. Although several literature reports describe the design and use of these logic gates to introduce new functions in bacterial, yeast and mammalian cells, similar approaches in plants remain scarce, likely due to challenges posed by the complexity of plants and the lack of some technological advances, e.g., species-independent genetic transformation. In this mini review, we have surveyed recent reports describing synthetic genetic Boolean logic operators in plants and the different gate architectures used. We also briefly discuss the potential of deploying these genetic devices in plants to bring to fruition a new generation of resilient crops and improved biomanufacturing platforms.


Assuntos
Produtos Agrícolas , Lógica , Animais , Mamíferos
14.
J Exp Bot ; 74(17): 5104-5123, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37386914

RESUMO

Xyloglucan, a major hemicellulose, interacts with cellulose and pectin to assemble primary cell walls in plants. Loss of the xyloglucan galactosyltransferase MURUS3 (MUR3) leads to the deficiency of galactosylated xyloglucan and perturbs plant growth. However, it is unclear whether defects in xyloglucan galactosylation influence the synthesis of other wall polysaccharides, cell wall integrity, cytoskeleton behaviour, and endomembrane homeostasis. Here, we found that in mur3-7 etiolated seedlings cellulose was reduced, CELLULOSE SYNTHASE (CESA) genes were down-regulated, the density and mobility of cellulose synthase complexes (CSCs) were decreased, and cellulose microfibrils become discontinuous. Pectin, rhamnogalacturonan II (RGII), and boron contents were reduced in mur3-7 plants, and B-RGII cross-linking was abnormal. Wall porosity and thickness were significantly increased in mur3-7 seedlings. Endomembrane aggregation was also apparent in the mur3-7 mutant. Furthermore, mutant seedlings and their actin filaments were more sensitive to Latrunculin A (LatA) treatment. However, all defects in mur3-7 mutants were substantially restored by exogenous boric acid application. Our study reveals the importance of MUR3-mediated xyloglucan galactosylation for cell wall structural assembly and homeostasis, which is required for the stabilization of the actin cytoskeleton and the endomembrane system.


Assuntos
Arabidopsis , Arabidopsis/genética , Xilanos/química , Celulose , Parede Celular/química , Citoesqueleto de Actina , Pectinas , Plântula
15.
Plant Cell ; 32(11): 3576-3597, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32883711

RESUMO

Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis (Arabidopsis thaliana) QUA2, qua2 and tsd2 In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Celulose/biossíntese , Metiltransferases/metabolismo , Mutação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Adesão Celular/genética , Parede Celular/genética , Celulose/genética , Dinitrobenzenos/farmacologia , Regulação da Expressão Gênica de Plantas , Hipocótilo/citologia , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Metiltransferases/genética , Microtúbulos/metabolismo , Pectinas/biossíntese , Pectinas/genética , Pectinas/metabolismo , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Sulfanilamidas/farmacologia , Ácidos Urônicos/metabolismo
16.
Gynecol Oncol ; 177: 20-31, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37625235

RESUMO

OBJECTIVE: To determine the impact on overall survival (OS) and patient-reported outcomes (PROs) of combining atezolizumab with standard therapy for newly diagnosed stage III/IV ovarian cancer. METHODS: The placebo-controlled double-blind randomized phase III IMagyn050/GOG 3015/ENGOT-OV39 trial (NCT03038100) assigned eligible patients to 3-weekly atezolizumab 1200 mg or placebo for 22 cycles with platinum-based chemotherapy and bevacizumab. Coprimary endpoints were progression-free survival (already reported) and OS in the PD-L1-positive and intent-to-treat (ITT) populations, tested hierarchically. Prespecified PRO analyses focused on disease-related abdominal pain and bloating symptoms (European Organisation for Research and Treatment of Cancer QLQ-OV28), functioning, and health-related quality of life (HRQoL) (QLQ-C30). RESULTS: After 38 months' median follow-up, the OS hazard ratio in the PD-L1-positive population was 0.83 (95% CI, 0.66-1.06; p = 0.13); median OS was not estimable with atezolizumab versus 49.2 months with placebo. The hazard ratio for OS in the ITT population was 0.92 (95% CI, 0.78-1.09; median 50.5 versus 46.6 months, respectively). At week 9, similar proportions of patients in both arms of the neoadjuvant cohort showed ≥10-point improvement from baseline in abdominal pain and bloating, functioning, and HRQoL. In the primary surgery cohort, similar proportions of patients in each arm had improved, stable, or worsened physical and role function and HRQoL from baseline over time. Neither cohort showed differences between arms in treatment-related symptoms or overall side-effect bother. CONCLUSIONS: Incorporation of atezolizumab into standard therapy for newly diagnosed ovarian cancer does not significantly improve efficacy or impose additional treatment burden for patients. CLINICALTRIALS: gov registration: NCT03038100.


Assuntos
Neoplasias Ovarianas , Qualidade de Vida , Humanos , Feminino , Antígeno B7-H1 , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/etiologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/etiologia , Medidas de Resultados Relatados pelo Paciente , Dor Abdominal/etiologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
17.
J Biol Chem ; 297(3): 101029, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339742

RESUMO

Understanding the mechanism by which cellulases from bacteria, fungi, and protozoans catalyze the digestion of lignocellulose is important for developing cost-effective strategies for bioethanol production. Cel7A from the fungus Trichoderma reesei is a model exoglucanase that degrades cellulose strands from their reducing ends by processively cleaving individual cellobiose units. Despite being one of the most studied cellulases, the binding and hydrolysis mechanisms of Cel7A are still debated. Here, we used single-molecule tracking to analyze the dynamics of 11,116 quantum dot-labeled TrCel7A molecules binding to and moving processively along immobilized cellulose. Individual enzyme molecules were localized with a spatial precision of a few nanometers and followed for hundreds of seconds. Most enzyme molecules bound to cellulose in a static state and dissociated without detectable movement, whereas a minority of molecules moved processively for an average distance of 39 nm at an average speed of 3.2 nm/s. These data were integrated into a three-state model in which TrCel7A molecules can bind from solution into either static or processive states and can reversibly switch between states before dissociating. From these results, we conclude that the rate-limiting step for cellulose degradation by Cel7A is the transition out of the static state, either by dissociation from the cellulose surface or by initiation of a processive run. Thus, accelerating the transition of Cel7A out of its static state is a potential avenue for improving cellulase efficiency.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Hypocreales/enzimologia , Acetobacteraceae/metabolismo , Hidrólise , Microscopia de Força Atômica , Microscopia de Fluorescência , Pontos Quânticos , Especificidade por Substrato
18.
Plant J ; 106(6): 1493-1508, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960548

RESUMO

Regulating plant architecture is a major goal in current breeding programs. Previous studies have increased our understanding of the genetic regulation of plant architecture, but it is also essential to understand how organ morphology is controlled at the cellular level. In the cell wall, pectin modification and degradation are required for organ morphogenesis, and these processes involve a series of pectin-modifying enzymes. Polygalacturonases (PGs) are a major group of pectin-hydrolyzing enzymes that cleave pectin backbones and release oligogalacturonides (OGs). PG genes function in cell expansion and separation, and contribute to organ expansion, separation and dehiscence in plants. However, whether and how they influence other cellular processes and organ morphogenesis are poorly understood. Here, we characterized the functions of Arabidopsis PG45 (PG45) in organ morphogenesis using genetic, developmental, cell biological and biochemical analyses. A heterologously expressed portion of PG45 cleaves pectic homogalacturonan in vitro, indicating that PG45 is a bona fide PG. PG45 functions in leaf and flower structure, branch formation and organ growth. Undulation in pg45 knockout and PG45 overexpression leaves is accompanied by impaired adaxial-abaxial polarity, and loss of PG45 shortens the duration of cell proliferation in the adaxial epidermis of developing leaves. Abnormal leaf curvature is coupled with altered pectin metabolism and autogenous OG profiles in pg45 knockout and PG45 overexpression leaves. Together, these results highlight a previously underappreciated function for PGs in determining tissue polarity and regulating cell proliferation, and imply the existence of OG-based signaling pathways that modulate plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Desenvolvimento Vegetal/fisiologia , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Poligalacturonase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação
19.
Proc Biol Sci ; 289(1988): 20221969, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475444

RESUMO

Animal migrations are some of the most ubiquitous and one of the most threatened ecological processes globally. A wide range of migratory behaviours occur in nature, and this behaviour is not uniform among and within species, where even individuals in the same population can exhibit differences. While the environment largely drives migratory behaviour, it is necessary to understand the genetic mechanisms influencing migration to elucidate the potential of migratory species to cope with novel conditions and adapt to environmental change. In this study, we identified genes associated with a migratory trait by undertaking pooled genome-wide scans on a natural population of migrating mule deer. We identified genomic regions associated with variation in migratory direction, including FITM1, a gene linked to the formation of lipids, and DPPA3, a gene linked to epigenetic modifications of the maternal line. Such a genetic basis for a migratory trait contributes to the adaptive potential of the species and might affect the flexibility of individuals to change their behaviour in the face of changes in their environment.


Assuntos
Cervos , Animais , Cervos/genética , Genômica
20.
New Phytol ; 233(1): 126-131, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34160082

RESUMO

Many plant movements are facilitated by contractile cells called gelatinous fibers (G-fibers), but how G-fibers function in the climbing movements of woody vines remains underexplored. In this Insight, we compare the presence and distribution of G-fibers in the stems of stem-twiners, which wrap around supports, with non-stem-twiners, which attach to supports via tendrils or adventitious roots. An examination of 164 species spanning the vascular plant phylogeny reveals that G-fibers are common in stem-twiners but scarce in non-stem-twiners, suggesting that G-fibers are preferentially formed in the organ responsible for movement. When present, G-fibers are in the xylem, phloem, pericycle, and/or cortex. We discuss the hypothesis that G-fibers are foundational to plant movement and highlight research opportunities concerning G-fiber development and function.


Assuntos
Gelatina , Madeira , Floema , Raízes de Plantas , Caules de Planta , Xilema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA