RESUMO
Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism.
Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Resistência à Insulina , Músculos/metabolismo , Atrofia Muscular/patologia , Obesidade/prevenção & controle , Animais , GTP Fosfo-Hidrolases/deficiência , Técnicas de Silenciamento de Genes , CamundongosRESUMO
Monoamine oxidase (MAO) is rapidly gaining appreciation for its pathophysiologic role in cardiac injury and failure. Oxidative deamination of norepinephrine by MAO generates H2O2 and the catecholaldehyde 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL), the latter of which is a highly potent and reactive electrophile that has been linked to cardiotoxicity. However, many questions remain as to whether catecholaldehydes regulate basic physiological processes in the myocardium and the pathways involved. Here, we examined the role of MAO-derived oxidative metabolites in mediating the activation of cardiac fibroblasts in response to norepinephrine. In neonatal murine cardiac fibroblasts, norepinephrine increased reactive oxygen species (ROS), accumulation of catechol-modified protein adducts, expression and secretion of collagens I/III, and other markers of profibrotic activation including STAT3 phosphorylation. These effects were attenuated with MAO inhibitors, the aldehyde-scavenging dipeptide l-carnosine, and FPS-ZM1, an antagonist for the receptor for advanced glycation endproducts (RAGE). Interestingly, treatment of cardiac fibroblasts with a low dose (1 µM) of DOPEGAL-modified albumin phenocopied many of the effects of norepinephrine and also induced an increase in RAGE expression. Higher doses (>10 µM) of DOPEGAL-modified albumin were determined to be toxic to cardiac fibroblasts in a RAGE-dependent manner, which was mitigated by l-carnosine. Collectively, these findings suggest that norepinephrine may influence extracellular matrix remodeling via an adrenergic-independent redox pathway in cardiac fibroblasts involving the MAO-mediated generation of ROS, catecholaldehydes, and RAGE. Furthermore, since elevations in the catecholaminergic tone and oxidative stress in heart disease are linked with cardiac fibrosis, this study illustrates novel drug targets that could potentially mitigate this serious disorder.
Assuntos
Miofibroblastos/efeitos dos fármacos , Norepinefrina/farmacologia , Norepinefrina/toxicidade , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Células Cultivadas , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Estrutura Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Miofibroblastos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidoresRESUMO
Monoamine oxidase (MAO) catalyzes the oxidative deamination of dopamine and norepinephrine to produce 3,4-dihydroxyphenylacetaldehyde (DOPAL) and 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL), respectively. Both of these aldehydes are potently cytotoxic and have been implicated in pathogenesis of neurodegenerative and cardiometabolic disorders. Previous work has demonstrated that both the catechol and aldehyde moieties of DOPAL are reactive and cytotoxic via their propensity to cause macromolecular cross-linking. With certain amines, DOPAL likely reacts via a Schiff base before oxidative activation of the catechol and rearrangement to a stable indole product. Our current work expands on this reactivity and includes the less-studied DOPEGAL. Although we confirmed that antioxidants mediated DOPAL's reactivity with carnosine and N-acetyl-l-lysine, antioxidants had no effect on reactivity with l-cysteine. Therefore, we propose a non-oxidative mechanism where, following Schiff base formation, the thiol of l-cysteine reacts to form a thiazolidine. Similarly, we demonstrate that DOPEGAL forms a putative thiazolidine conjugate with l-cysteine. We identified and characterized both l-cysteine conjugates via HPLC-MS and additionally identified a DOPEGAL adduct with carnosine, which is likely an Amadori product. Furthermore, we were able to demonstrate that these conjugates are produced in biological systems via MAO after treatment of the cell lysate with norepinephrine or dopamine along with the corresponding nucleophiles (i.e., l-cysteine and carnosine). As it has been established that metabolic and oxidative stress leads to increased MAO activity and accumulation of DOPAL and DOPEGAL, it is conceivable that conjugation of these aldehydes to carnosine or l-cysteine is a newly identified detoxification pathway. Furthermore, the ability to characterize these adducts via analytical techniques reveals their potential for use as biomarkers of dopamine or norepinephrine metabolic disruption.
Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Carnosina/metabolismo , Catecóis/metabolismo , Cisteína/metabolismo , Monoaminoxidase/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura MolecularRESUMO
Cardiac mitochondrial phospholipid acyl chains regulate respiratory enzymatic activity. In several diseases, the rodent cardiac phospholipidome is extensively rearranged; however, whether specific acyl chains impair respiratory enzyme function is unknown. One unique remodeling event in the myocardium of obese and diabetic rodents is an increase in docosahexaenoic acid (DHA) levels. Here, we first confirmed that cardiac DHA levels are elevated in diabetic humans relative to controls. We then used dietary supplementation of a Western diet with DHA as a tool to promote cardiac acyl chain remodeling and to study its influence on respiratory enzyme function. DHA extensively remodeled the acyl chains of cardiolipin (CL), mono-lyso CL, phosphatidylcholine, and phosphatidylethanolamine. Moreover, DHA lowered enzyme activities of respiratory complexes I, IV, V, and I+III. Mechanistically, the reduction in enzymatic activities were not driven by a dramatic reduction in the abundance of supercomplexes. Instead, replacement of tetralinoleoyl-CL with tetradocosahexaenoyl-CL in biomimetic membranes prevented formation of phospholipid domains that regulate enzyme activity. Tetradocosahexaenoyl-CL inhibited domain organization due to favorable Gibbs free energy of phospholipid mixing. Furthermore, in vitro substitution of tetralinoleoyl-CL with tetradocosahexaenoyl-CL blocked complex-IV binding. Finally, reintroduction of linoleic acid, via fusion of phospholipid vesicles to mitochondria isolated from DHA-fed mice, rescued the major losses in the mitochondrial phospholipidome and complexes I, IV, and V activities. Altogether, our results show that replacing linoleic acid with DHA lowers select cardiac enzyme activities by potentially targeting domain organization and phospholipid-protein binding, which has implications for the ongoing debate about polyunsaturated fatty acids and cardiac health.
Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Linoleico/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Fosfolipídeos/metabolismo , Cardiolipinas/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Insaturados/metabolismo , Coração/efeitos dos fármacos , Humanos , Espectrometria de Massas , Mitocôndrias Cardíacas/efeitos dos fármacos , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismoRESUMO
Oxidative deamination of norepinephrine (NE) and dopamine (DA) by monoamine oxidase (MAO) generates the catecholaldehydes 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) and 3,4-dihydroxyphenylacetaldehyde (DOPAL), respectively, and H2O2. Catecholaldehydes are highly reactive electrophiles that have been implicated as causal factors in the etiology of neurodegenerative diseases and cardiac injury from ischemia and diabetes. The reactivity of both catechol and aldehyde groups enables the catecholaldehdyes to cross-link proteins and other biological molecules. Carnosine is a ß-alanyl-histidine dipeptide found in millimolar concentrations in brain and myocardium. It is well known to detoxify aldehydes formed from oxidized lipids and sugars, yet the reactivity of carnosine with catecholaldehydes has never been reported. Here, we investigated the ability of carnosine to form conjugates with DOPAL and DOPEGAL. Both catecholaldehydes were highly reactive towards L-cysteine (L-Cys), as well as carnosine; however, glutathione (GSH) showed essentially no reactivity towards DOPAL. In contrast, GSH readily reacted with the lipid peroxidation product 4-hydroxy-2-nonenal (4HNE), while carnosine showed low reactivity to 4HNE by comparison. To determine whether carnosine mitigates catecholaldehyde toxicity, samples of atrial myocardium were collected from patients undergoing elective cardiac surgery. Using permeabilized myofibers prepared from this tissue, mitochondrial respiration analysis revealed a concentration-dependent decrease in ADP-stimulated respiration with DOPAL. Pre-incubation with carnosine, but not GSH or L-Cys, significantly reduced this effect (p < 0.05). Carnosine was also able to block formation of catecholaldehyde protein adducts in isolated human cardiac mitochondria treated with NE. These findings demonstrate the unique reactivity of carnosine towards catecholaldehydes and, therefore, suggest a novel and distinct biological role for histidine dipeptides in this detoxification reaction. The therapeutic potential of carnosine in diseases associated with catecholamine-related toxicity is worthy of further examination.
Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Aldeídos/metabolismo , Carnosina/farmacologia , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Idoso , Catecóis , Cisteína/farmacologia , Glutationa/farmacologia , Humanos , Pessoa de Meia-Idade , OxirreduçãoRESUMO
OBJECTIVE: The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. APPROACH AND RESULTS: Young, sedentary men and women were divided into lean (body mass index 18-25; n=14), intermediate (body mass index 28-32.5; n=13), and obese (body mass index 33-40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared with both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase inhibitor, lowered (normalized) H2O2 and superoxide levels, and reversed microvascular endothelial dysfunction in obese subjects. After 8 weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the NADPH oxidase subunits p22phox, p47phox, and p67phox was increased in obese relative to lean subjects, where p22phox and p67phox expression was attenuated by exercise training in obese subjects. CONCLUSIONS: This study implicates NADPH oxidase as a source of excessive ROS production in skeletal muscle of obese individuals and links excessive NADPH oxidase-derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies.
Assuntos
Endotélio Vascular/enzimologia , Exercício Físico , Microvasos/enzimologia , NADPH Oxidases/metabolismo , Obesidade/enzimologia , Estresse Oxidativo , Músculo Quadríceps/irrigação sanguínea , Comportamento Sedentário , Vasodilatação , Adolescente , Adulto , Índice de Massa Corporal , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Inibidores Enzimáticos/administração & dosagem , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Microdiálise , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , NADPH Oxidases/antagonistas & inibidores , Obesidade/diagnóstico , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Fosfoproteínas/metabolismo , Músculo Quadríceps/efeitos dos fármacos , Músculo Quadríceps/enzimologia , Fluxo Sanguíneo Regional , Superóxidos/metabolismo , Fatores de Tempo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Adulto JovemRESUMO
Oxidative phosphorylation (OXPHOS) efficiency, defined as the ATP-to-O ratio, is a critical feature of mitochondrial function that has been implicated in health, aging, and disease. To date, however, the methods to measure ATP/O have primarily relied on indirect approaches or entail parallel rather than simultaneous determination of ATP synthesis and O2 consumption rates. The purpose of this project was to develop and validate an approach to determine the ATP/O ratio in permeabilized fiber bundles (PmFBs) from simultaneous measures of ATP synthesis (JATP) and O2 consumption (JO2 ) rates in real time using a custom-designed apparatus. JO2 was measured via a polarigraphic oxygen sensor and JATP via fluorescence using an enzyme-linked assay system (hexokinase II, glucose-6-phosphate dehydrogenase) linked to NADPH production. Within the dynamic linear range of the assay system, ADP-stimulated increases in steady-state JATP mirrored increases in steady-state JO2 (r(2) = 0.91, P < 0.0001, n = 57 data points). ATP/O ratio was less than one under low rates of respiration (15 µM ADP) but increased to more than two at moderate (200 µM ADP) and maximal (2,000 µM ADP) rates of respiration with an interassay coefficient of variation of 24.03, 16.72, and 11.99%, respectively. Absolute and relative (to mechanistic) ATP/O ratios were lower in PmFBs (2.09 ± 0.251, 84%) compared with isolated mitochondria (2.44 ± 0.124, 98%). ATP/O ratios in PmFBs were not affected by the activity of adenylate kinase or creatine kinase. These findings validate an enzyme-linked respiratory clamp system for measuring OXPHOS efficiency in PmFBs and provide evidence that OXPHOS efficiency increases as energy demand increases.
Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Animais , Glucosefosfato Desidrogenase/metabolismo , Hexoquinase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADP/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologiaRESUMO
Long-chain acyl-CoA synthetase 1 (ACSL1) contributes more than 90% of total cardiac ACSL activity, but its role in phospholipid synthesis has not been determined. Mice with an inducible knockout of ACSL1 (Acsl1(T-/-)) have impaired cardiac fatty acid oxidation and rely on glucose for ATP production. Because ACSL1 exhibited a strong substrate preference for linoleate, we investigated the composition of heart phospholipids. Acsl1(T-/-) hearts contained 83% less tetralinoleoyl-cardiolipin (CL), the major form present in control hearts. A stable knockdown of ACSL1 in H9c2 rat cardiomyocytes resulted in low incorporation of linoleate into CL and in diminished incorporation of palmitate and oleate into other phospholipids. Overexpression of ACSL1 in H9c2 and HEK-293 cells increased incorporation of linoleate into CL and other phospholipids. To determine whether increasing the content of linoleate in CL would improve mitochondrial respiratory function in Acsl1(T-/-) hearts, control and Acsl1(T-/-) mice were fed a high-linoleate diet; this diet normalized the amount of tetralinoleoyl-CL but did not improve respiratory function. Thus, ACSL1 is required for the normal composition of several phospholipid species in heart. Although ACSL1 determines the acyl-chain composition of heart CL, a high tetralinoleoyl-CL content may not be required for normal function.
Assuntos
Cardiolipinas/metabolismo , Coenzima A Ligases/deficiência , Mitocôndrias/metabolismo , Animais , Linhagem Celular , Respiração Celular , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Gorduras na Dieta/farmacologia , Ácidos Graxos/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ácido Linoleico/farmacologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução/efeitos dos fármacos , Transporte Proteico , RatosRESUMO
MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I and myosin heavy chain for degradation. While MuRF1 has been reported to interact with mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1's role in regulating mitochondrial function to date. In the present study, we measured cardiac mitochondrial function from isolated permeabilized muscle fibers in previously phenotyped MuRF1 transgenic and MuRF1-/- mouse models to determine the role of MuRF1 in intermediate energy metabolism and ROS production. We identified a significant decrease in reactive oxygen species production in cardiac muscle fibers from MuRF1 transgenic mice with increased α-MHC driven MuRF1 expression. Increased MuRF1 expression in ex vivo and in vitro experiments revealed no alterations in the respiratory chain complex I and II function. Working perfusion experiments on MuRF1 transgenic hearts demonstrated significant changes in glucose oxidation. However, total oxygen consumption was decreased [corrected]. This data provides evidence for MuRF1 as a novel regulator of cardiac ROS, offering another mechanism by which increased MuRF1 expression may be cardioprotective in ischemia reperfusion injury, in addition to its inhibition of apoptosis via proteasome-mediate degradation of c-Jun. The lack of mitochondrial function phenotype identified in MuRF1-/- hearts may be due to the overlapping interactions of MuRF1 and MuRF2 with energy regulating proteins found by yeast two-hybrid studies reported here, implying a duplicity in MuRF1 and MuRF2's regulation of mitochondrial function.
Assuntos
Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético/fisiologia , Mitocôndrias Cardíacas/metabolismo , Proteínas Musculares/metabolismo , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Camundongos , Camundongos Knockout , Proteínas com Motivo TripartidoRESUMO
Lipid enals are electrophilic products of lipid peroxidation that induce genotoxic and proteotoxic stress by covalent modification of DNA and proteins, respectively. As lipid enals accumulate to substantial amounts in visceral adipose during obesity and aging, we hypothesized that biogenic lipid enals may represent an endogenously generated, and therefore physiologically relevant, senescence inducers. To that end, we identified that 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal (4-HHE) or 4-oxo-2-nonenal (4-ONE) initiate the cellular senescence program of IMR90 fibroblasts and murine adipose stem cells. In such cells, lipid enals induced accumulation of γH2AX foci, increased p53 signaling, enhanced expression of p21Cip1, and upregulated the expression and secretion of numerous cytokines, chemokines, and regulatory factors independently from NF-κB activation. Concomitantly, lipid enal treatment resulted in covalent modification of mitochondrial proteins, reduced mitochondrial spare respiratory capacity, altered nucleotide pools, and increased the phosphorylation of AMP kinase. Lipid-induced senescent cells upregulated BCL2L1 (Bcl-xL) and BCL2L2 (Bcl-w). and were resistant to apoptosis while pharmacologic inhibition of BAX/BAK macropores attenuated lipid-induced senescence. In situ, the 4-HNE scavenger L-carnosine ameliorated the development of the cellular senescence, while in visceral fat of obese C57BL/6J mice, L-carnosine reduced the abundance of 4-HNE-modified proteins and blunted the expression of senescence biomarkers CDKN1A (p21Cip1), PLAUR, BCL2L1, and BCL2L2. Taken together, the results suggest that lipid enals are endogenous regulators of cellular senescence and that biogenic lipid-induced senescence (BLIS) may represent a mechanistic link between oxidative stress and age-dependent pathologies.
RESUMO
AIMS: A mechanistic link between depression and risk of arrhythmias could be attributed to altered catecholamine metabolism in the heart. Monoamine oxidase-A (MAO-A), a key enzyme involved in catecholamine metabolism and longstanding antidepressant target, is highly expressed in the myocardium. The present study aimed to elucidate the functional significance and underlying mechanisms of cardiac MAO-A in arrhythmogenesis. METHODS AND RESULTS: Analysis of the TriNetX database revealed that depressed patients treated with MAO inhibitors had a lower risk of arrhythmias compared with those treated with selective serotonin reuptake inhibitors. This effect was phenocopied in mice with cardiomyocyte-specific MAO-A deficiency (cMAO-Adef), which showed a significant reduction in both incidence and duration of catecholamine stress-induced ventricular tachycardia compared with wild-type mice. Additionally, cMAO-Adef cardiomyocytes exhibited altered Ca2+ handling under catecholamine stimulation, with increased diastolic Ca2+ reuptake, reduced diastolic Ca2+ leak, and diminished systolic Ca2+ release. Mechanistically, cMAO-Adef hearts had reduced catecholamine levels under sympathetic stress, along with reduced levels of reactive oxygen species and protein carbonylation, leading to decreased oxidation of Type II PKA and CaMKII. These changes potentiated phospholamban (PLB) phosphorylation, thereby enhancing diastolic Ca2+ reuptake, while reducing ryanodine receptor 2 (RyR2) phosphorylation to decrease diastolic Ca2+ leak. Consequently, cMAO-Adef hearts exhibited lower diastolic Ca2+ levels and fewer arrhythmogenic Ca2+ waves during sympathetic overstimulation. CONCLUSION: Cardiac MAO-A inhibition exerts an anti-arrhythmic effect by enhancing diastolic Ca2+ handling under catecholamine stress.
Assuntos
Cálcio , Catecolaminas , Monoaminoxidase , Taquicardia Ventricular , Animais , Feminino , Humanos , Masculino , Camundongos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Catecolaminas/metabolismo , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diástole/efeitos dos fármacos , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/enzimologia , Taquicardia Ventricular/fisiopatologiaRESUMO
Increased fatty acid availability and oxidative stress are physiological consequences of exercise (Ex) and a high-fat, high-sugar (HFHS) diet. Despite these similarities, the global effects of Ex are beneficial, whereas HFHS diets are largely deleterious to the cardiovascular system. The reasons for this disparity are multifactorial and incompletely understood. We hypothesized that differences in redox adaptations following HFHS diet in comparison to exercise may underlie this disparity, particularly in mitochondria. Our objective in this study was to determine mechanisms by which heart and skeletal muscle (red gastrocnemius, RG) mitochondria experience differential redox adaptations to 12 weeks of HFHS diet and/or exercise training (Ex) in rats. Surprisingly, both HFHS feeding and Ex led to contrasting effects in heart and RG, in that mitochondrial H2O2 decreased in heart but increased in RG following both HFHS diet and Ex, in comparison to sedentary animals fed a control diet. These differences were determined to be due largely to increased antioxidant/anti-inflammatory enzymes in the heart following the HFHS diet, which did not occur in RG. Specifically, upregulation of mitochondrial thioredoxin reductase-2 occurred with both HFHS and Ex in the heart, but only with Ex in RG, and systematic evaluation of this enzyme revealed that it is critical for suppressing mitochondrial H2O2 during fatty acid oxidation. These findings are novel and important in that they illustrate the unique ability of the heart to adapt to oxidative stress imposed by HFHS diet, in part through upregulation of thioredoxin reductase-2. Furthermore, upregulation of thioredoxin reductase-2 plays a critical role in preserving the mitochondrial redox status in the heart and skeletal muscle with exercise.
Assuntos
Dieta Hiperlipídica , Sacarose Alimentar/administração & dosagem , Mitocôndrias Musculares/fisiologia , Condicionamento Físico Animal/fisiologia , Tiorredoxina Redutase 2/fisiologia , Animais , Cálcio/metabolismo , Gorduras na Dieta/administração & dosagem , Ácidos Graxos/administração & dosagem , Expressão Gênica , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Coração/fisiologia , Peróxido de Hidrogênio/metabolismo , Masculino , Músculo Esquelético/fisiologia , Oxirredução , Consumo de Oxigênio , Ratos , Ratos Sprague-DawleyRESUMO
We have previously shown that myocardial infarct size in nonreperfused hearts of mice with a functional deletion of the circadian rhythm gene mPer2 (mPer2-M) was reduced by 43%. We hypothesized that acute ischemia-reperfusion injury (I/R = 30 min I/2 h R) would also be reduced in these mice and that ischemic preconditioning (IPC) (3 × 5 min cycles) before I/R, which enhances protection in wild-type (WT) hearts, would provide further protection in mPer2-M hearts. We observed a 69 and 75% decrease in infarct size in mPer2-M mouse hearts compared with WT following I/R and IPC, respectively. This was coincident with 67% less neutrophil infiltration and 57% less apoptotic cardiomyocytes. IPC in mPer2-M mice before I/R had 48% less neutrophil density and 46% less apoptosis than their WT counterparts. Macrophage density was not different between WT and mPer2-M I/R, but it was 45% higher in mPer2-M IPC mouse hearts compared with WT IPC. There were no baseline differences in cardiac mitochondrial function between WT and mPer2-M mice, but, following I/R, WT exhibited a marked decrease in maximal O2 consumption supported by complex I-mediated substrates, whereas mPer2-M did not, despite no difference in complex I content. Moreover, cardiac mitochondria from WT mice exhibited a very robust increase in ADP-stimulated O2 consumption in response to exogenously added cytochrome c, along with a high rate of reactive oxygen species production, none of which was exhibited by cardiac mitochondria from mPer2-M following I/R. Taken together, these findings suggest that mPer2 deletion preserves mitochondrial membrane structure and functional integrity in heart following I/R injury, the consequence of which is preservation of myocardial viability. Understanding the mechanisms connecting cardiac events, mitochondrial function, and mPer2 could lead to preventative and therapeutic strategies for at risk populations.
Assuntos
Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Proteínas Circadianas Period/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Apoptose , Biomarcadores/metabolismo , Western Blotting , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitocôndrias Cardíacas/patologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Mutação , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Infiltração de Neutrófilos , Estresse Oxidativo , Consumo de Oxigênio , Proteínas Circadianas Period/genética , Espécies Reativas de Oxigênio/metabolismoRESUMO
The aim of this study was to investigate aerobic exercise training as a means to prevent erectile dysfunction (ED) and coronary artery disease (CAD) development associated with inactivity and diet-induced obesity. Male Sprague-Dawley rats were fed a Western diet (WD) or a control diet (CD) for 12 wk. Subgroups within each diet remained sedentary (Sed) or participated in aerobic interval treadmill running throughout the dietary intervention. Erectile function was evaluated under anesthesia by measuring the mean arterial pressure and intracavernosal pressure in response to electrical field stimulation of the cavernosal nerve, in the absence or presence of either apocynin, an NADPH oxidase inhibitor, or sepiapterin, a tetrahydrobiopterin precursor. Coronary artery endothelial function (CAEF) was evaluated ex vivo with cumulative doses of ACh applied to preconstricted segments of the left anterior descending coronary artery. CAEF was assessed in the absence or presence of apocynin or sepiapterin. Erectile function (P < 0.0001) and CAEF (P < 0.001) were attenuated in WD-Sed. Exercise preserved erectile function (P < 0.0001) and CAEF (P < 0.05) within the WD. Erectile function (P < 0.01) and CAEF (P < 0.05) were augmented by apocynin only in WD-Sed, while sepiapterin (P < 0.05) only augmented erectile function in WD-Sed. These data demonstrate that a chronic WD induces impairment in erectile function and CAEF that are commonly partially reversible by apocynin, whereas sepiapterin treatment exerted differential functional effects between the two vascular beds. Furthermore, exercise training may be a practical means of preventing diet-induced ED and CAD development.
Assuntos
Acetofenonas/farmacologia , Doença da Artéria Coronariana/prevenção & controle , Vasos Coronários/efeitos dos fármacos , Dieta Hiperlipídica , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Disfunção Erétil/prevenção & controle , Terapia por Exercício , Ereção Peniana/efeitos dos fármacos , Pterinas/farmacologia , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Disfunção Erétil/etiologia , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Terapia por Exercício/métodos , Masculino , NADPH Oxidases/metabolismo , Obesidade/etiologia , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Comportamento Sedentário , Fatores de Tempo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologiaRESUMO
Introduction. It is suggested that erectile dysfunction (ED) may be an early risk factor for cardiovascular disease. Aim. The goal of this study was to determine whether development of ED precedes the onset of coronary artery endothelial dysfunction in response to a Western diet (WD), thereby establishing whether the WD differentially impacts the endothelium in a time-dependent manner. Additionally, a goal was to determine if diet-induced ED is reversible with intracavernosal sepiapterin treatment. Methods. Male Sprague-Dawley rats were fed a WD for 4, 8, or 12 weeks, or a control diet for 8 weeks. Erectile function was evaluated by measuring the mean arterial pressure (MAP) and intracavernosal pressure (ICP) in response to electrical field stimulation of the cavernosal nerve near the major pelvic ganglion, in the absence and presence of sepiapterin. Coronary artery endothelial function was evaluated ex vivo with cumulative doses of acetylcholine (ACh) applied to segments of the left anterior descending coronary artery preconstricted with serotonin. Main Outcome Measures. Erectile function was assessed as the ICP response to electrical field stimulation (EFS), normalized to MAP. Coronary artery endothelial function was assessed as the effective concentration producing 50% of a maximal response (EC50 ) of the ACh response. Results. The ICP/MAP response to EFS was significantly attenuated following both 8 and 12 weeks of the WD compared with the control diet (P < 0.05). Sepiapterin treatment augmented the ICP/MAP response in all WD groups (P < 0.05). The coronary artery EC50 of the ACh response was not different from control following 4 or 8 weeks but was significantly elevated following 12 weeks of the WD (P < 0.01). Conclusions. These data suggest that erectile function is reduced prior to coronary artery endothelial function in response to the WD. Improvement of erectile function with sepiapterin in WD rats indicates that nitric oxide synthase uncoupling is a key mechanism in diet-induced ED. La Favor JD, Anderson EJ, Hickner RC, and Wingard CJ. Erectile dysfunction precedes coronary artery endothelial dysfunction in rats fed a high-fat, high-sucrose, Western pattern diet. J Sex Med 2013;10:694-703.
Assuntos
Vasos Coronários/fisiopatologia , Dieta Hiperlipídica , Sacarose Alimentar/administração & dosagem , Endotélio Vascular/fisiopatologia , Disfunção Erétil/fisiopatologia , Acetilcolina/farmacologia , Animais , Glicemia/análise , Pressão Sanguínea/fisiologia , Vasos Coronários/efeitos dos fármacos , Estimulação Elétrica , Masculino , Modelos Animais , Pênis/inervação , Pterinas/farmacologia , Ratos , Ratos Sprague-Dawley , Vasodilatadores/farmacologiaRESUMO
Diets replete with n-3 PUFAs (polyunsaturated fatty acids) are known to have therapeutic potential for the heart, although a specifically defined duration of the n-3 PUFA diet required to achieve these effects remains unknown, as does their mechanism of action. The present study was undertaken to establish whether adaptations in mitochondrial function and stress tolerance in the heart is evident following short- (3 weeks) and long- (14 weeks) term dietary intervention of n-3 PUFAs, and to identify novel mechanisms by which these adaptations occur. Mitochondrial respiration [mO2 (mitochondrial O2)], H2O2 emission [mH2O2 (mitochondrial H2O2)] and Ca2+-retention capacity [mCa2+ (mitochondrial Ca2+)] were assessed in mouse hearts following dietary intervention. Mice fed n-3 PUFAs for 14 weeks showed significantly lower mH2O2 and greater mCa2+ compared with all other groups. However, no significant differences were observed after 3 weeks of the n-3 PUFA diet, or in mice fed on an HFC (high-fat control) diet enriched with vegetable shortening, containing almost no n-3 PUFAs, for 14 weeks. Interestingly, expression and activity of key enzymes involved in antioxidant and phase II detoxification pathways, all mediated by Nrf2 (nuclear factor E2-related factor 2), were elevated in hearts from mice fed the n-3 PUFA diet, but not hearts from mice fed the HFC diet, even at 3 weeks. This increase in antioxidant systems in hearts from mice fed the n-3 PUFA diet was paralleled by increased levels of 4-hydroxyhexenal protein adducts, an aldehyde formed from peroxidation of n-3 PUFAs. The findings of the present study demonstrate distinct time-dependent effects of n-3 PUFAs on mitochondrial function and antioxidant response systems in the heart. In addition, they are the first to provide direct evidence that non-enzymatic oxidation products of n-3 PUFAs may be driving mitochondrial and redox-mediated adaptations, thereby revealing a novel mechanism for n-3 PUFA action in the heart.
Assuntos
Aldeídos/toxicidade , Antioxidantes/metabolismo , Gorduras na Dieta/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Animais , Cálcio/metabolismo , Dieta , Gorduras na Dieta/administração & dosagem , Esquema de Medicação , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Regulação para CimaRESUMO
Oral consumption of histidyl dipeptides such as l-carnosine has been suggested to promote cardiometabolic health, although therapeutic mechanisms remain incompletely understood. We recently reported that oral consumption of a carnosine analog suppressed markers of fibrosis in liver of obese mice, but whether antifibrotic effects of carnosine extend to the heart is not known, nor are the mechanisms by which carnosine is acting. Here, we investigated whether oral carnosine was able to mitigate the adverse cardiac remodeling associated with diet induced obesity in a mouse model of enhanced lipid peroxidation (i.e., glutathione peroxidase 4 deficient mice, GPx4+/-), a model which mimics many of the pathophysiological aspects of metabolic syndrome and T2 diabetes in humans. Wild-type (WT) and GPx4+/-male mice were randomly fed a standard (CNTL) or high fat high sucrose diet (HFHS) for 16 weeks. Seven weeks after starting the diet, a subset of the HFHS mice received carnosine (80 mM) in their drinking water for duration of the study. Carnosine treatment led to a moderate improvement in glycemic control in WT and GPx4+/-mice on HFHS diet, although insulin sensitivity was not significantly affected. Interestingly, while our transcriptomic analysis revealed that carnosine therapy had only modest impact on global gene expression in the heart, carnosine substantially upregulated cardiac GPx4 expression in both WT and GPx4+/-mice on HFHS diet. Carnosine also significantly reduced protein carbonyls and iron levels in myocardial tissue from both genotypes on HFHS diet. Importantly, we observed a robust antifibrotic effect of carnosine therapy in hearts from mice on HFHS diet, which further in vitro experiments suggest is due to carnosine's ability to suppress collagen-cross-linking. Collectively, this study reveals antifibrotic potential of carnosine in the heart with obesity and illustrates key mechanisms by which it may be acting.
RESUMO
Prohibitins (PHB1 and PHB2) are ubiquitously expressed proteins which play critical roles in multiple biological processes, and together form the ring-like PHB complex found in phospholipid-rich cellular compartments including lipid rafts. Recent studies have implicated PHB1 as a mediator of fatty acid transport as well as a membrane scaffold mediating B lymphocyte and mast cell signal transduction. However, the specific role of PHBs in the macrophage have not been characterized, including their role in fatty acid uptake and lipid raft-mediated inflammatory signaling. We hypothesized that the PHB complex regulates macrophage inflammatory signaling through the formation of lipid rafts. To evaluate our hypothesis, RAW 264.7 macrophages were transduced with shRNA against PHB1, PHB2, or scrambled control (Scr), and then stimulated with lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-α), which activate lipid raft-dependent receptor signaling (CD14/TLR4 and TNFR1, respectively). PHB1 knockdown was lethal, whereas PHB2 knockdown (PHB2kd), which also resulted in decreased PHB1 expression, led to attenuated nuclear factor-kappa-B (NF-κB) activation and subsequent cytokine and chemokine production. PHB2kd macrophages also had decreased cell surface TNFR1, CD14, TLR4, and lipid raft marker ganglioside GM1 at baseline and post-stimuli. Post-LPS, PHB2kd macrophages did not increase the concentration of cellular saturated, monounsaturated, and polyunsaturated fatty acids. This was accompanied by decreased lipid raft formation and modified plasma membrane molecular packing, further supporting the PHB complex's importance in lipid raft formation. Taken together, these data suggest a critical role for PHBs in regulating macrophage inflammatory signaling via maintenance of fatty acid composition and lipid raft structure. SUMMARY: Prohibitins are proteins found in phospholipid-rich cellular compartments, including lipid rafts, that play important roles in signaling, transcription, and multiple other cell functions. Macrophages are key cells in the innate immune response and the presence of membrane lipid rafts is integral to signal transduction, but the role of prohibitins in macrophage lipid rafts and associated signaling is unknown. To address this question, prohibitin knockdown macrophages were generated and responses to lipopolysaccharide and tumor necrosis factor-alpha, which act through lipid raft-dependent receptors, were analyzed. Prohibitin knockdown macrophages had significantly decreased cytokine and chemokine production, transcription factor activation, receptor expression, lipid raft assembly and membrane packing, and altered fatty acid remodeling. These data indicate a novel role for prohibitins in macrophage inflammatory signaling through regulation of fatty acid composition and lipid raft formation.
Assuntos
Proibitinas , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Lipopolissacarídeos , Receptor 4 Toll-Like/metabolismo , Ácidos Graxos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Macrófagos , Citocinas/metabolismo , Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Fosfolipídeos/metabolismo , Quimiocinas/metabolismoRESUMO
Reactive oxygen species (ROS) accumulation is a cardinal feature of skeletal muscle atrophy. ROS refers to a collection of radical molecules whose cellular signals are vast, and it is unclear which downstream consequences of ROS are responsible for the loss of muscle mass and strength. Here, we show that lipid hydroperoxides (LOOH) are increased with age and disuse, and the accumulation of LOOH by deletion of glutathione peroxidase 4 (GPx4) is sufficient to augment muscle atrophy. LOOH promoted atrophy in a lysosomal-dependent, proteasomal-independent manner. In young and old mice, genetic and pharmacological neutralization of LOOH or their secondary reactive lipid aldehydes robustly prevented muscle atrophy and weakness, indicating that LOOH-derived carbonyl stress mediates age- and disuse-induced muscle dysfunction. Our findings provide novel insights for the role of LOOH in sarcopenia including a therapeutic implication by pharmacological suppression.
Assuntos
Sarcopenia , Camundongos , Animais , Sarcopenia/patologia , Peróxidos Lipídicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Estresse OxidativoRESUMO
The heart is a highly oxidative organ in which cardiomyocyte turnover is virtually absent, making it particularly vulnerable to accumulation of lipid peroxidation products (LPP) formed as a result of oxidative damage. Reactive oxygen and nitrogen species are the most common electrophiles formed during lipid peroxidation and lead to the formation of both stable and unstable LPP. Of the LPP formed, highly reactive aldehydes are a well-recognized causative factor in ageing and age-associated diseases, including cardiovascular disease and diabetes. Recent studies have identified that the mitochondria are both a primary source and target of LPP, with specific emphasis on aldehydes in cardiomyocytes and how these affect the electron transport system and Ca(2+) balance. Numerous studies have found that there are functional consequences in the heart following exposure to specific aldehydes (acrolein, trans-2-hexanal, 4-hydroxynonenal and acetaldehyde). Because these LPP are known to form in heart failure, cardiac ischaemia-reperfusion injury and diabetes, they may have an underappreciated role in the pathophysiology of these disease processes. Lipid peroxidation products are involved in the transcriptional regulation of endogenous anti-oxidant systems. Recent evidence demonstrates that transient increases in LPP may be beneficial in cardioprotection by contributing to mitohormesis (i.e. induction of anti-oxidant systems) in cardiomyocytes. Thus, exploitation of the cardioprotective actions of the LPP may represent a novel therapeutic strategy for future treatment of heart disease.