Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Biol Evol ; 28(9): 2537-47, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21470968

RESUMO

Nine different regions totaling 9.7 Mb of the 4.02 Gb Aegilops tauschii genome were sequenced using the Sanger sequencing technology and compared with orthologous Brachypodium distachyon, Oryza sativa (rice), and Sorghum bicolor (sorghum) genomic sequences. The ancestral gene content in these regions was inferred and used to estimate gene deletion and gene duplication rates along each branch of the phylogenetic tree relating the four species. The total gene number in the extant Ae. tauschii genome was estimated to be 36,371. The gene deletion and gene duplication rates and total gene numbers in the four genomes were used to estimate the total gene number in each node of the phylogenetic tree. The common ancestor of the Brachypodieae and Triticeae lineages was estimated to have had 28,558 genes, and the common ancestor of the Panicoideae, Ehrhartoideae, and Pooideae subfamilies was estimated to have had 27,152 or 28,350 genes, depending on the ancestral gene scenario. Relative to the Brachypodieae and Triticeae common ancestor, the gene number was reduced in B. distachyon by 3,026 genes and increased in Ae. tauschii by 7,813 genes. The sum of gene deletion and gene duplication rates, which reflects the rate of gene synteny loss, was correlated with the rate of structural chromosome rearrangements and was highest in the Ae. tauschii lineage and lowest in the rice lineage. The high rate of gene space evolution in the Ae. tauschii lineage accounts for the fact that, contrary to the expectations, the level of synteny between the phylogenetically more related Ae. tauschii and B. distachyon genomes is similar to the level of synteny between the Ae. tauschii genome and the genomes of the less related rice and sorghum. The ratio of gene duplication to gene deletion rates in these four grass species closely parallels both the total number of genes in a species and the overall genome size. Because the overall genome size is to a large extent a function of the repeated sequence content in a genome, we suggest that the amount and activity of repeated sequences are important factors determining the number of genes in a genome.


Assuntos
Genoma de Planta , Primulaceae , Análise de Sequência de DNA/métodos , Sequências de Repetição em Tandem , Brachypodium/genética , Evolução Molecular , Deleção de Genes , Duplicação Gênica , Oryza/genética , Primulaceae/genética , Sorghum/genética
2.
Proc Natl Acad Sci U S A ; 106(37): 15780-5, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19717446

RESUMO

Single-nucleotide polymorphism was used in the construction of an expressed sequence tag map of Aegilops tauschii, the diploid source of the wheat D genome. Comparisons of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and 40 were assigned respectively to the rice, sorghum, and Ae. tauschii lineages, showing greatly accelerated genome evolution in the large Triticeae genomes. The reduction of the basic chromosome number from 12 to 7 in the Triticeae has taken place by a process during which an entire chromosome is inserted by its telomeres into a break in the centromeric region of another chromosome. The original centromere-telomere polarity of the chromosome arms is maintained in the new chromosome. An intrachromosomal telomere-telomere fusion resulting in a pericentric translocation of a chromosome segment or an entire arm accompanied or preceded the chromosome insertion in some instances. Insertional dysploidy has been recorded in three grass subfamilies and appears to be the dominant mechanism of basic chromosome number reduction in grasses. A total of 64% and 66% of Ae. tauschii genes were syntenic with sorghum and rice genes, respectively. Synteny was reduced in the vicinity of the termini of modern Ae. tauschii chromosomes but not in the vicinity of the ancient termini embedded in the Ae. tauschii chromosomes, suggesting that the dependence of synteny erosion on gene location along the centromere-telomere axis either evolved recently in the Triticeae phylogenetic lineage or its evolution was recently accelerated.


Assuntos
Evolução Molecular , Genoma de Planta , Poaceae/genética , Centrômero/genética , Inversão Cromossômica , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Modelos Genéticos , Oryza/genética , Filogenia , Poaceae/classificação , Polimorfismo de Nucleotídeo Único , Sorghum/genética , Especificidade da Espécie , Sintenia , Telômero/genética , Translocação Genética , Triticum/genética
3.
Genome ; 52(8): 726-40, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19767902

RESUMO

An in-depth analysis was carried out with expressed sequence tags (ESTs) for genes in and near the HMW-GS loci. Considerations for using ESTs are discussed, including the occurrence of chimeric and aberrant HMW-GS ESTs. Complete gene sequences demonstrated the feasibility of constructing accurate full-length coding regions from EST assemblies and found, or supported, errors in several previously reported HMW-GS gene sequences. New complete HMW-GS gene sequences are reported for the cultivars Chinese Spring and Glenlea. The Ay subunit gene, which is considered null in cultivated wheats, was shown to transcribe in at least two germplasms. Analyses support the conclusion that of the five known genes within this genomic region, the two HMW-GS genes and the globulin gene are highly expressed. The other two genes, encoding a receptor kinase and a protein kinase, have one and no identifiable wheat EST, respectively, although ESTs are found for the orthologous genes in barley. The ESTs of all five genes within the HMW-GS region are either definitely associated with the endosperm or possibly originate from imbibed seed, suggesting the four distinct gene classes in this region are part of a seed or endosperm chromatin domain. EST resources were also used to determine relative abundance of ESTs for all classes of wheat prolamines and indicated differential levels of expression both among germplasms and among the three genomes of hexaploid wheats.


Assuntos
Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Globulinas/genética , Glutens/genética , Triticum/genética , Sequência de Aminoácidos , Genes de Plantas , Dados de Sequência Molecular , Filogenia , Proteínas Quinases/genética , Alinhamento de Sequência
4.
Nat Biotechnol ; 14(7): 875-9, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9631014

RESUMO

High-molecular-weight glutenin subunits (HMW-GS), one class of seed storage proteins, are important determinants of the bread-making quality of wheat flour. To change the amount and composition of these proteins via genetic engineering, a gene encoding a novel hybrid subunit under the control of native HMW-GS regulatory sequences was inserted into wheat. Of 26 independent transgenic lines identified by bialaphos selection, 18 expressed the cotransformed hybrid HMW-GS gene in their seed. The hybrid subunit accumulated to levels comparable to those of the native HMW-GS. These results show that a native HMW-GS gene promoter can be used to obtain high levels of expression of seed storage and, potentially, other proteins in transgenic wheat endosperm. Transgene expression was stable for at least three seed generations in the majority of lines. These experiments demonstrate the feasibility of constructing wheat plants with novel seed protein compositions.


Assuntos
Regulação da Expressão Gênica de Plantas , Glutens/análogos & derivados , Triticum/genética , Glutens/genética , Peso Molecular , Plantas Geneticamente Modificadas , Transformação Genética
5.
Genetics ; 168(2): 609-23, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514039

RESUMO

A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726, respectively. The number of EST loci was greater on the long arms than on the short arms for all three chromosomes. The distribution of ESTs along chromosome arms was nonrandom with EST clusters occurring in the distal regions of short arms and middle regions of long arms. Duplications of group 1 ESTs in other homoeologous groups occurred at a rate of 35.5%. Seventy-five percent of wheat chromosome 1 ESTs had significant matches with rice sequences (E < or = e(-10)), where large regions of conservation occurred between wheat consensus chromosome 1 and rice chromosome 5 and between the proximal portion of the long arm of wheat consensus chromosome 1 and rice chromosome 10. Only 9.5% of group 1 ESTs showed significant matches to Arabidopsis genome sequences. The results presented are useful for gene mapping and evolutionary and comparative genomics of grasses.


Assuntos
Arabidopsis/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Oryza/genética , Ploidias , Triticum/genética , Genes de Plantas , Genoma de Planta , Alinhamento de Sequência
6.
Genetics ; 168(2): 639-50, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514041

RESUMO

The focus of this study was to analyze the content, distribution, and comparative genome relationships of 996 chromosome bin-mapped expressed sequence tags (ESTs) accounting for 2266 restriction fragments (loci) on the homoeologous group 3 chromosomes of hexaploid wheat (Triticum aestivum L.). Of these loci, 634, 884, and 748 were mapped on chromosomes 3A, 3B, and 3D, respectively. The individual chromosome bin maps revealed bins with a high density of mapped ESTs in the distal region and bins of low density in the proximal region of the chromosome arms, with the exception of 3DS and 3DL. These distributions were more localized on the higher-resolution group 3 consensus map with intermediate regions of high-mapped-EST density on both chromosome arms. Gene ontology (GO) classification of mapped ESTs was not significantly different for homoeologous group 3 chromosomes compared to the other groups. A combined analysis of the individual bin maps using 537 of the mapped ESTs revealed rearrangements between the group 3 chromosomes. Approximately 232 (44%) of the consensus mapped ESTs matched sequences on rice chromosome 1 and revealed large- and small-scale differences in gene order. Of the group 3 mapped EST unigenes approximately 21 and 32% matched the Arabidopsis coding regions and proteins, respectively, but no chromosome-level gene order conservation was detected.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Oryza/genética , Triticum/genética , Genoma de Planta , Alinhamento de Sequência
7.
Genetics ; 168(2): 625-37, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514040

RESUMO

The complex hexaploid wheat genome offers many challenges for genomics research. Expressed sequence tags facilitate the analysis of gene-coding regions and provide a rich source of molecular markers for mapping and comparison with model organisms. The objectives of this study were to construct a high-density EST chromosome bin map of wheat homoeologous group 2 chromosomes to determine the distribution of ESTs, construct a consensus map of group 2 ESTs, investigate synteny, examine patterns of duplication, and assess the colinearity with rice of ESTs assigned to the group 2 consensus bin map. A total of 2600 loci generated from 1110 ESTs were mapped to group 2 chromosomes by Southern hybridization onto wheat aneuploid chromosome and deletion stocks. A consensus map was constructed of 552 ESTs mapping to more than one group 2 chromosome. Regions of high gene density in distal bins and low gene density in proximal bins were found. Two interstitial gene-rich islands flanked by relatively gene-poor regions on both the short and long arms and having good synteny with rice were discovered. The map locations of two ESTs indicated the possible presence of a small pericentric inversion on chromosome 2B. Wheat chromosome group 2 was shown to share syntenous blocks with rice chromosomes 4 and 7.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Oryza/genética , Triticum/genética , Genoma de Planta , Ploidias , Alinhamento de Sequência
8.
Genetics ; 168(2): 677-86, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514044

RESUMO

To localize wheat (Triticum aestivum L.) ESTs on chromosomes, 882 homoeologous group 6-specific ESTs were identified by physically mapping 7965 singletons from 37 cDNA libraries on 146 chromosome, arm, and sub-arm aneuploid and deletion stocks. The 882 ESTs were physically mapped to 25 regions (bins) flanked by 23 deletion breakpoints. Of the 5154 restriction fragments detected by 882 ESTs, 2043 (loci) were localized to group 6 chromosomes and 806 were mapped on other chromosome groups. The number of loci mapped was greatest on chromosome 6B and least on 6D. The 264 ESTs that detected orthologous loci on all three homoeologs using one restriction enzyme were used to construct a consensus physical map. The physical distribution of ESTs was uneven on chromosomes with a tendency toward higher densities in the distal halves of chromosome arms. About 43% of the wheat group 6 ESTs identified rice homologs upon comparisons of genome sequences. Fifty-eight percent of these ESTs were present on rice chromosome 2 and the remaining were on other rice chromosomes. Even within the group 6 bins, rice chromosomal blocks identified by 1-6 wheat ESTs were homologous to up to 11 rice chromosomes. These rice-block contigs were used to resolve the order of wheat ESTs within each bin.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Deleção de Genes , Genes de Plantas , Triticum/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genoma de Planta , Alinhamento de Sequência
9.
Genetics ; 168(2): 665-76, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514043

RESUMO

We constructed high-density deletion bin maps of wheat chromosomes 5A, 5B, and 5D, including 2338 loci mapped with 1052 EST probes and 217 previously mapped loci (total 2555 loci). This information was combined to construct a consensus chromosome bin map of group 5 including 24 bins. A relatively higher number of loci were mapped on chromosome 5B (38%) compared to 5A (34%) and 5D (28%). Differences in the levels of polymorphism among the three chromosomes were partially responsible for these differences. A higher number of duplicated loci was found on chromosome 5B (42%). Three times more loci were mapped on the long arms than on the short arms, and a significantly higher number of probes, loci, and duplicated loci were mapped on the distal halves than on the proximal halves of the chromosome arms. Good overall colinearity was observed among the three homoeologous group 5 chromosomes, except for the previously known 5AL/4AL translocation and a putative small pericentric inversion in chromosome 5A. Statistically significant colinearity was observed between low-copy-number ESTs from wheat homoeologous group 5 and rice chromosomes 12 (88 ESTs), 9 (72 ESTs), and 3 (84 ESTs).


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Oryza/genética , Triticum/genética , Etiquetas de Sequências Expressas , Genoma de Planta , Alinhamento de Sequência
10.
Genetics ; 168(2): 585-93, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514037

RESUMO

This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5' and 3' sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics.


Assuntos
Mapeamento Cromossômico , Biologia Computacional , Mapeamento de Sequências Contíguas , Etiquetas de Sequências Expressas/química , Deleção de Genes , Triticum/genética , Southern Blotting , Sondas de DNA , Biblioteca Gênica
11.
Genetics ; 168(2): 595-608, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514038

RESUMO

A total of 37 original cDNA libraries and 9 derivative libraries enriched for rare sequences were produced from Chinese Spring wheat (Triticum aestivum L.), five other hexaploid wheat genotypes (Cheyenne, Brevor, TAM W101, BH1146, Butte 86), tetraploid durum wheat (T. turgidum L.), diploid wheat (T. monococcum L.), and two other diploid members of the grass tribe Triticeae (Aegilops speltoides Tausch and Secale cereale L.). The emphasis in the choice of plant materials for library construction was reproductive development subjected to environmental factors that ultimately affect grain quality and yield, but roots and other tissues were also included. Partial cDNA expressed sequence tags (ESTs) were examined by various measures to assess the quality of these libraries. All ESTs were processed to remove cloning system sequences and contaminants and then assembled using CAP3. Following these processing steps, this assembly yielded 101,107 sequences derived from 89,043 clones, which defined 16,740 contigs and 33,213 singletons, a total of 49,953 "unigenes." Analysis of the distribution of these unigenes among the libraries led to the conclusion that the enrichment methods were effective in reducing the most abundant unigenes and to the observation that the most diverse libraries were from tissues exposed to environmental stresses including heat, drought, salinity, or low temperature.


Assuntos
Etiquetas de Sequências Expressas/química , Biblioteca Gênica , Triticum/genética , Vetores Genéticos , Análise de Sequência de DNA , Técnica de Subtração
12.
Genetics ; 168(2): 651-63, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514042

RESUMO

A total of 1918 loci, detected by the hybridization of 938 expressed sequence tag unigenes (ESTs) from 26 Triticeae cDNA libraries, were mapped to wheat (Triticum aestivum L.) homoeologous group 4 chromosomes using a set of deletion, ditelosomic, and nulli-tetrasomic lines. The 1918 EST loci were not distributed uniformly among the three group 4 chromosomes; 41, 28, and 31% mapped to chromosomes 4A, 4B, and 4D, respectively. This pattern is in contrast to the cumulative results of EST mapping in all homoeologous groups, as reported elsewhere, that found the highest proportion of loci mapped to the B genome. Sixty-five percent of these 1918 loci mapped to the long arms of homoeologous group 4 chromosomes, while 35% mapped to the short arms. The distal regions of chromosome arms showed higher numbers of loci than the proximal regions, with the exception of 4DL. This study confirmed the complex structure of chromosome 4A that contains two reciprocal translocations and two inversions, previously identified. An additional inversion in the centromeric region of 4A was revealed. A consensus map for homoeologous group 4 was developed from 119 ESTs unique to group 4. Forty-nine percent of these ESTs were found to be homoeologous to sequences on rice chromosome 3, 12% had matches with sequences on other rice chromosomes, and 39% had no matches with rice sequences at all. Limited homology (only 26 of the 119 consensus ESTs) was found between wheat ESTs on homoeologous group 4 and the Arabidopsis genome. Forty-two percent of the homoeologous group 4 ESTs could be classified into functional categories on the basis of blastX searches against all protein databases.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Triticum/genética , Deleção de Genes , Duplicação Gênica , Biblioteca Gênica , Genoma de Planta
13.
Genetics ; 168(2): 687-99, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514045

RESUMO

The objectives of this study were to develop a high-density chromosome bin map of homoeologous group 7 in hexaploid wheat (Triticum aestivum L.), to identify gene distribution in these chromosomes, and to perform comparative studies of wheat with rice and barley. We mapped 2148 loci from 919 EST clones onto group 7 chromosomes of wheat. In the majority of cases the numbers of loci were significantly lower in the centromeric regions and tended to increase in the distal regions. The level of duplicated loci in this group was 24% with most of these loci being localized toward the distal regions. One hundred nineteen EST probes that hybridized to three fragments and mapped to the three group 7 chromosomes were designated landmark probes and were used to construct a consensus homoeologous group 7 map. An additional 49 probes that mapped to 7AS, 7DS, and the ancestral translocated segment involving 7BS also were designated landmarks. Landmark probe orders and comparative maps of wheat, rice, and barley were produced on the basis of corresponding rice BAC/PAC and genetic markers that mapped on chromosomes 6 and 8 of rice. Identification of landmark ESTs and development of consensus maps may provide a framework of conserved coding regions predating the evolution of wheat genomes.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Triticum/genética , Deleção de Genes , Duplicação Gênica , Marcadores Genéticos , Genoma de Planta , Hordeum/genética , Oryza/genética , Alinhamento de Sequência
14.
Genetics ; 168(2): 701-12, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514046

RESUMO

Because of the huge size of the common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) genome of 17,300 Mb, sequencing and mapping of the expressed portion is a logical first step for gene discovery. Here we report mapping of 7104 expressed sequence tag (EST) unigenes by Southern hybridization into a chromosome bin map using a set of wheat aneuploids and deletion stocks. Each EST detected a mean of 4.8 restriction fragments and 2.8 loci. More loci were mapped in the B genome (5774) than in the A (5173) or D (5146) genomes. The EST density was significantly higher for the D genome than for the A or B. In general, EST density increased relative to the physical distance from the centromere. The majority of EST-dense regions are in the distal parts of chromosomes. Most of the agronomically important genes are located in EST-dense regions. The chromosome bin map of ESTs is a unique resource for SNP analysis, comparative mapping, structural and functional analysis, and polyploid evolution, as well as providing a framework for constructing a sequence-ready, BAC-contig map of the wheat genome.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Genoma de Planta , Triticum/genética , Marcadores Genéticos , Ploidias , Locos de Características Quantitativas , Alinhamento de Sequência
15.
Plant Physiol ; 102(4): 1077-1084, 1993 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12231889

RESUMO

Improvement of wheat (Triticum aestivum) by biotechnological approaches is currently limited by a lack of efficient and reliable transformation methodology. In this report, we detail a protocol for transformation of a highly embryogenic wheat cultivar, Bobwhite. Calli derived from immature embryos, 0.5 to 1 mm long, were bombarded with microprojectiles coated with DNA containing as marker genes the bar gene, encoding phosphinothricin-resistance, and the gene encoding [beta]-glucuronidase (GUS), each under control of a maize ubiquitin promoter. The bombardment was performed 5 d after embryo excision, just after initiation of callus proliferation. The ability of plantlets to root in the presence of 1 or 3 mg/L of bialaphos was the most reliable selection criteria used to identify transformed plants. Stable transformation was confirmed by marker gene expression assays and the presence of the bar sequences in high molecular weight chromosomal DNA of the resultant plants. Nine independent lines of fertile transgenic wheat plants have been obtained thus far, at a frequency of 1 to 2 per 1000 embryos bombarded. On average, 168 d elapsed between embryo excision for bombardment and anthesis of the T0 plants. The transmission of both the resistance phenotype and bar DNA to the T1 generation verified that germline transformation had occurred.

16.
Gene ; 174(1): 51-8, 1996 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-8863728

RESUMO

A synthetic wheat high-molecular-weight (HMW) glutenin storage protein gene analog was constructed for expression in E. coli. This first synthetic HMW-glutenin gene and future modifications are intended to allow systematic dissection of the molecular basis of HMW-glutenin role in the visco-elastic properties critical for wheat product processing and utilization. The design of the gene included four features: different construction strategies for the separate assembly of major polypeptide domains, the inclusion of convenient restriction sites for modifications, use of a codon selection similar to E. coli highly expressed genes, and the ability to produce repetitive sequence domains of exact numbers of defined repeats. The complete synthetic HMW-glutenin construct was 1908 bp, and contained 32 identical copies of one of the HMW-glutenin repetitive domain motifs. The gene expressed the novel HMW-glutenin protein to relatively high levels in bacterial cultures and the protein exhibited the known anomalous behavior of HMW-glutenins in SDS-PAGE.


Assuntos
Genes de Plantas , Genes Sintéticos , Glutens/análogos & derivados , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/genética , Glutens/genética , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico
17.
Gene ; 55(2-3): 303-17, 1987.
Artigo em Inglês | MEDLINE | ID: mdl-3311887

RESUMO

A vector was constructed that directs the expression of foreign genes in the yeast Saccharomyces cerevisiae. This vector contains an expression site that was constructed by in vitro modification of the iso-1-cytochrome c (CYC1) gene of S. cerevisiae. The expression of heterologous sequences can be experimentally controlled by catabolite control sequences, promoter and transcription initiation sequences and termination sequence derived from the CYC1 gene. A portion of a genomic wheat alpha-gliadin gene consisting of the entire 861 bp of protein-coding sequence, 18 bp of 5' leader sequence and 54 bp of 3'-noncoding sequence was inserted into the expression site. A CYC1::alpha-gliadin transcript of approx. 1050 nucleotides was synthesized in transformed yeast under the control of the CYC1 regulatory region. The transcripts terminated within the alpha-gliadin 3'-noncoding region, near a nucleotide sequence similar to the yeast transcription termination consensus sequence. The alpha-gliadin was immunochemically detected in total protein extracts from transformed cells and accounted for approx. 0.1% of the total cellular protein. The size of alpha-gliadin synthesized in yeast is the same as that of mature wheat alpha-gliadin. This is consistent with recognition and cleavage of the signal peptide by yeast. Due to the amino acid composition of alpha-gliadin, the availability of glutamine tRNA is a potential translational limitation to high-level synthesis in yeast.


Assuntos
Gliadina/genética , Proteínas de Plantas/genética , Triticum/genética , Códon , Vetores Genéticos , Gliadina/biossíntese , Regiões Promotoras Genéticas , Aminoacil-RNA de Transferência/fisiologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica
18.
Biotechniques ; 30(6): 1300-5, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11414222

RESUMO

We have developed a graphical interface to allow the researcher to view and assess the quality of sequencing results using a series of program scripts developed to process data generated by automated sequencers. The scripts are written in Perl programming language and are executable under the cgibin directory of a Web server environment. The scripts direct nucleic acid sequencing trace file data output from automated sequencers to be analyzed by the phred molecular biology program and are displayed as graphical hypertext mark-up language (HTML) pages. The scripts are mainly designed to handle 96-well microtiter dish samples, but the scripts are also able to read data from 384-well microtiter dishes 96 samples at a time. The scripts may be customized for different laboratory environments and computer configurations. Web links to the sources and discussion page are provided.


Assuntos
Sequência de Bases , Hipermídia , Análise de Sequência de DNA , DNA de Plantas/genética , Apresentação de Dados , Eletroforese Capilar/instrumentação , Etiquetas de Sequências Expressas , Fluorometria , Internet , Controle de Qualidade , Sensibilidade e Especificidade , Análise de Sequência de DNA/instrumentação , Triticum/genética
20.
Genome ; 49(5): 531-44, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16767178

RESUMO

The US Wheat Genome Project, funded by the National Science Foundation, developed the first large public Triticeae expressed sequence tag (EST) resource. Altogether, 116,272 ESTs were produced, comprising 100,674 5' ESTs and 15 598 3' ESTs. These ESTs were derived from 42 cDNA libraries, which were created from hexaploid bread wheat (Triticum aestivum L.) and its close relatives, including diploid wheat (T. monococcum L. and Aegilops speltoides L.), tetraploid wheat (T. turgidum L.), and rye (Secale cereale L.), using tissues collected from various stages of plant growth and development and under diverse regimes of abiotic and biotic stress treatments. ESTs were assembled into 18,876 contigs and 23,034 singletons, or 41,910 wheat unigenes. Over 90% of the contigs contained fewer than 10 EST members, implying that the ESTs represented a diverse selection of genes and that genes expressed at low and moderate to high levels were well sampled. Statistical methods were used to study the correlation of gene expression patterns, based on the ESTs clustered in the 1536 contigs that contained at least 10 5' EST members and thus representing the most abundant genes expressed in wheat. Analysis further identified genes in wheat that were significantly upregulated (p < 0.05) in tissues under various abiotic stresses when compared with control tissues. Though the function annotation cannot be assigned for many of these genes, it is likely that they play a role associated with the stress response. This study predicted the possible functionality for 4% of total wheat unigenes, which leaves the remaining 96% with their functional roles and expression patterns largely unknown. Nonetheless, the EST data generated in this project provide a diverse and rich source for gene discovery in wheat.


Assuntos
Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Triticum/genética , Triticum/metabolismo , Análise por Conglomerados , Mapeamento de Sequências Contíguas , Coleta de Dados , Bases de Dados Genéticas , Biblioteca Gênica , Genes de Plantas , Filogenia , Poliploidia , Distribuição Tecidual , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA