RESUMO
Controlling PCR fidelity is an important issue for molecular biology and high-fidelity PCR is essential for gene cloning. In general, fidelity control is achieved by protein engineering of polymerases. In contrast, only a few studies have reported controlling fidelity using chemically modified nucleotide substrates. In this report, we synthesized nucleotide substrates possessing a modification on Pγ and evaluated the effect of this modification on PCR fidelity. One of the substrates, nucleotide tetraphosphate, caused a modest decrease in Taq DNA polymerase activity and the effect on PCR fidelity was dependent on the type of mutation. The use of deoxyadenosine tetraphosphate enhanced the A : TâG : C mutation dramatically, which is common when using Taq polymerase. Conversely, deoxyguanosine tetraphosphate (dG4P) suppressed this mutation but increased the G : CâA : T mutation during PCR. Using an excess amount of dG4P suppressed both mutations successfully and total fidelity was improved.
Assuntos
Técnicas de Amplificação de Ácido Nucleico , Fosfatos , Taq Polimerase/genética , Taq Polimerase/metabolismo , Reação em Cadeia da Polimerase , Mutação , NucleotídeosRESUMO
We developed one-pot oxidation/olefination procedures of primary alcohols giving Z-α,ß-unsaturated esters 3. TEMPO-(CuCl or CuBr2)-(2,2'-bipyridine) (1:1:1) catalyzed O2 oxidation of primary alcohols in the presence of Z-selective Horner-Wadsworth-Emmons reagent 1b and K3PO4 or NaH gave 3 with Z/E = 84:16 to 96:4 in high yields. A stepwise reaction was also developed. After TEMPO-CuBr2-(2,2'-bipyridine)-K3PO4 (1:1:1:1) catalyzed O2 oxidation of alcohols in MeCN, the resulting mixture was treated with a THF solution of 1b and t-BuOK at -78 °C to 0 °C, giving 3 with higher selectivity (Z/E = 91:9 to 99:1).
RESUMO
Archaeosine (G+), 7-formamidino-7-deazaguanosine, is an archaea-specific modified nucleoside found at the 15th position of tRNAs. In Euryarchaeota, 7-cyano-7-deazaguanine (preQ0)-containing tRNA (q0N-tRNA), synthesized by archaeal tRNA-guanine transglycosylase (ArcTGT), has been believed to be converted to G+-containing tRNA (G+-tRNA) by the paralog of ArcTGT, ArcS. However, we found that several euryarchaeal ArcSs have lysine transfer activity to q0N-tRNA to form q0kN-tRNA, which has a preQ0 lysine adduct as a base. Through comparative genomics and biochemical experiments, we found that ArcS forms a robust complex with a radical S-adenosylmethionine (SAM) enzyme named RaSEA. The ArcS-RaSEA complex anaerobically converted q0N-tRNA to G+-tRNA in the presence of SAM and lysine via q0kN-tRNA. We propose that ArcS and RaSEA should be considered an archaeosine synthase α-subunit (lysine transferase) and ß-subunit (q0kN-tRNA lyase), respectively.
Assuntos
Enzimas/metabolismo , Guanosina/análogos & derivados , S-Adenosilmetionina/metabolismo , Bases de Dados Genéticas , Enzimas/genética , Perfilação da Expressão Gênica , Guanosina/biossíntese , Lisina/metabolismo , Especificidade por SubstratoRESUMO
(E)-α,ß-Unsaturated aldehydes were synthesized by the Julia-Kocienski reaction of 2,2-dimethoxyethyl 1-phenyl-1H-tetrazol-5-yl (PT) sulfone 3 with various aldehydes, followed by acid hydrolysis. The reaction could be carried out in one pot, and various (E)-α,ß-unsaturated aldehydes were obtained in a short time and with high yields.
Assuntos
Aldeídos , Sulfonas , Hidrólise , EstereoisomerismoRESUMO
One-pot Julia olefination using ribofuranosyl sulfones is described. The α-anomers of the ribofuranosyl sulfones were synthesized with complete α-selectivity via the glycosylation of heteroarylthiols using ribofuranosyl iodides as glycosyl donors and the subsequent oxidation of the resulting heteroaryl 1-thioribofuranosides with magnesium monoperphthalate (MMPP). The Julia olefination of the α-ribofuranosyl sulfones with aldehydes proceeded smoothly in one pot to afford the thermodynamically less stable (E)-exo-glycals with modest-to-excellent stereoselectivity (up to E/Z = 94:6) under the optimized conditions. The E selectivity was especially high for aromatic aldehydes. In contrast, the (Z)-exo-glycal was obtained as the main product with low stereoselectivity when the corresponding ß-ribofuranosyl sulfone was used (E/Z = 41:59). The remarkable impact of the anomeric configuration of the ribofuranosyl sulfones on the stereoselectivity of the Julia olefination has been rationalized using density functional theory (DFT) calculations. The protected ribose moiety of the resulting exo-glycals induced completely α-selective cyclopropanation on the exocyclic carbon-carbon double bond via the Simmons-Smith-Furukawa reaction. The 2-cyanoethyl group was found to be useful for the protection of the exo-glycals, as it could be removed without affecting the exocyclic CâC bond.
RESUMO
A serendipitous one-step transformation of 5'-deoxy-5'-heteroarylsulfonylnucleosides into cyclopentene derivatives is reported. This unique transformation likely proceeds via a domino reaction initiated by α-deprotonation of the heteroaryl sulfone and subsequent elimination reaction to generate a nucleobase and an α,ß-unsaturated sulfone that contains a formyl group. The Michael addition of the nucleobase to the α,ß-unsaturated sulfone and the subsequent intramolecular Julia-Kocienski reaction eventually generate the cyclopentene ring. Heteroarylthio and acylthio groups can be incorporated into the cyclopentene core in place of the nucleobase by conducting this reaction in the presence of a heteroarylthiol and a thiocarboxylic acid, respectively. cis,cis-Trisubstituted cyclopentene derivatives are obtained as a single stereoisomer from ribonucleoside-derived Julia-Kocienski sulfones.
Assuntos
Ciclopentanos , Nucleosídeos , Indicadores e Reagentes , Estereoisomerismo , SulfonasRESUMO
Density functional theory computations have elucidated the mechanism and origins of stereoselectivity in McGlacken's aldol-Tishchenko reaction for the diastereoselective synthesis of 1,3-amino alcohols using Ellman's t-butylsulfinimines as chiral auxiliaries. Variations of stereochemical outcome are dependent on the nature of the ketone starting materials used, and the aspects leading to these differences have been rationalized. The intramolecular hydride transfer step is the rate- and stereochemistry-determining step, and all prior steps are reversible.
Assuntos
Aldeídos , Cetonas , Iminas , Estereoisomerismo , Compostos de SulfônioRESUMO
O2-Phosphodiesterification of xanthosine has been achieved by a one-pot procedure consisting of the phosphitylation of the 2-carbonyl group of appropriately protected xanthosine derivatives using phosphoramidites and N-(cyanomethyl)dimethylammonium triflate (CMMT), oxidation of the resulting xanthosine 2-phosphite triesters, and deprotection. In addition, a study on the hydrolytic stability of a fully deprotected xanthosine 2-phosphate diester has revealed that it is more stable at higher pH.
Assuntos
Ésteres/síntese química , Organofosfatos/síntese química , Ribonucleosídeos/síntese química , Xantinas/síntese química , Ésteres/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Organofosfatos/química , Fosforilação , Ribonucleosídeos/química , Xantinas/químicaRESUMO
The Cucurbitaceae family (cucurbit) includes several economically important crops, such as melon, cucumber, watermelon, pumpkin, squash and gourds. During the past several years, genomic and genetic data have been rapidly accumulated for cucurbits. To store, mine, analyze, integrate and disseminate these large-scale datasets and to provide a central portal for the cucurbit research and breeding community, we have developed the Cucurbit Genomics Database (CuGenDB; http://cucurbitgenomics.org) using the Tripal toolkit. The database currently contains all available genome and expressed sequence tag (EST) sequences, genetic maps, and transcriptome profiles for cucurbit species, as well as sequence annotations, biochemical pathways and comparative genomic analysis results such as synteny blocks and homologous gene pairs between different cucurbit species. A set of analysis and visualization tools and user-friendly query interfaces have been implemented in the database to facilitate the usage of these large-scale data by the community. In particular, two new tools have been developed in the database, a 'SyntenyViewer' to view genome synteny between different cucurbit species and an 'RNA-Seq' module to analyze and visualize gene expression profiles. Both tools have been packed as Tripal extension modules that can be adopted in other genomics databases developed using the Tripal system.
Assuntos
Biologia Computacional/métodos , Produtos Agrícolas/genética , Cucurbita/genética , Bases de Dados Genéticas , Genoma de Planta/genética , Genômica/métodos , Biologia Computacional/estatística & dados numéricos , Produtos Agrícolas/classificação , Produtos Agrícolas/crescimento & desenvolvimento , Cucurbita/classificação , Cucurbita/crescimento & desenvolvimento , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica/métodos , Armazenamento e Recuperação da Informação/métodos , Internet , Especificidade da Espécie , SinteniaRESUMO
The methylenation reagent 1-methylbenzimidazol-2-yl methyl sulfone 2 reacts with various aldehydes and ketones in the presence of t-BuOK (room temperature, 1 h) in dimethylformamide to give the corresponding terminal alkenes generally in high yields. For sensitive substrates, the reaction is better carried out at low temperature using sodium hexamethyldisilazide in 1,2-dimethoxyethane. The byproduct is easily removed from the products, and the reaction conditions are mild and practical. Reagent 2 can be easily prepared from commercially available 2-mercaptobenzimidazole 5 in 95% yield without any expensive reagents.
RESUMO
Dasypyrum villosum is a wild relative of common wheat (Triticum aestivum L.) with resistance to Puccinia graminis f. tritici, the causal agent of stem rust, including the highly virulent race TTKSK (Ug99). In order to transfer resistance, T. durum-D. villosum amphiploids were initially developed and used as a bridge to create wheat-D. villosum introgression lines. Conserved ortholog set (COS) markers were used to identify D. villosum chromosome introgression lines, which were then subjected to seedling P. graminis f. tritici resistance screening with race TTKSK. A COS marker-verified line carrying chromosome 2V with TTKSK resistance was further characterized by combined genomic in situ and fluorescent in situ analyses to confirm a monosomic substitution line MS2V(2D) (20â³ + 1' 2V[2D]). This is the first report of stem rust resistance on 2V, which was temporarily designated as SrTA10276-2V. To facilitate the use of this gene in wheat improvement, a complete set of previously developed wheat-D. villosum disomic addition lines was subjected to genotyping-by-sequencing analysis to develop D. villosum chromosome-specific markers. On average, 350 markers per chromosome were identified. These markers can be used to develop diagnostic markers for D. villosum-derived genes of interest in wheat improvement.
Assuntos
Basidiomycota , Cromossomos de Plantas , Resistência à Doença , Poaceae , Triticum , Basidiomycota/fisiologia , Resistência à Doença/genética , Genes de Plantas/genética , Genótipo , Poaceae/genética , Triticum/genética , Triticum/microbiologiaRESUMO
Ribofuranosylation of a variety of alcohols with ribofuranosyl iodides in the presence of a base and triphenylphosphine oxide afforded the corresponding α-ribofuranosides with diastereoselectivities ≥ 99:1. This reaction can be carried out under mildly basic conditions and is thus compatible with acid-sensitive functional groups.
Assuntos
Álcoois/química , Iodetos/química , Compostos Organofosforados/química , Ribonucleosídeos/química , Catálise , Estrutura MolecularRESUMO
Many archaeal tRNAs have archaeosine (G(+)) at position 15 in the D-loop and this is thought to strengthen the tertiary interaction with C48 in the V-loop. In the first step of G(+) biosynthesis, archaeosine tRNA-guanine transglycosylase (ArcTGT)(1) catalyzes the base exchange reaction from guanine to 7-cyano-7-deazaguanine (preQ(0)). ArcTGT is classified into full-size or split types, according to databases of genomic information. Although the full-size type forms a homodimeric structure, the split type has been assumed to form a heterotetrameric structure, consisting of two kinds of peptide. However, there has been no definitive evidence for this presented to date. Here, we show that native ArcTGT could be isolated from Methanosarcina acetivorans and two peptides formed a robust complex in cells. Consequently, the two peptides function as actual subunits of ArcTGT. We also overexpressed recombinant ArcTGT in Escherichia coli cells. Product was successfully obtained by co-overexpression of the two subunits but one subunit alone was not adequately expressed in soluble fractions. This result suggests that interaction between the two subunits may contribute to the conformational stability of split ArcTGT. The values of the kinetic parameters for the recombinant and native ArcTGT were closely similar. Moreover, tRNA transcript with preQ(0) at position 15 was successfully prepared using the recombinant ArcTGT. This tRNA transcript is expected to be useful as a substrate for studies seeking the enzymes responsible for G(+) biosynthesis.
Assuntos
Methanosarcina/enzimologia , Pentosiltransferases/isolamento & purificação , RNA de Transferência/genética , Proteínas Recombinantes/isolamento & purificação , Escherichia coli , Guanina/metabolismo , Pentosiltransferases/biossíntese , Pentosiltransferases/genética , Peptídeos/química , Peptídeos/isolamento & purificação , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , RNA de Transferência/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Especificidade por SubstratoRESUMO
The first catalytic enantioselective aromatic Claisen rearrangement of allyl 2-naphthyl ethers using 5-10 mol% of π-copper(ii) complexes is reported. A Cu(OTf)2 complex with an l-α-homoalanine amide ligand gave (S)-products in up to 92% ee. Conversely, a Cu(OSO2C4F9)2 complex with an l-tert-leucine amide ligand gave (R)-products in up to 76% ee. Density-functional-theory (DFT) calculations suggest that these Claisen rearrangements proceed stepwise via tight-ion-pair intermediates, and that (S)- and (R)-products are enantioselectively obtained via the staggered transition states for the cleavage of the C-O bond, which is the rate-determining step.
RESUMO
Oxidative stress is the central pathomechanism in multiple cell death pathways, including ferroptosis, a form of iron-dependent programmed cell death. Various phytochemicals, which include the inducers of the nuclear factor erythroid-2-related factor 2-antioxidant response element (Nrf2-ARE) transcription pathway, prevent ferroptosis. We recently reported that several compounds, such as the potent Nrf2-ARE inducer curcumin, protect mouse hippocampus-derived HT22 cells against ferroptosis independently of Nrf2-ARE activity. The present study characterized the anti-ferroptotic mechanisms of two additional Nrf2-ARE inducers, quercetin and resveratrol. Both compounds prevented erastin- and RSL3-induced ferroptosis of wild-type HT22 cells, and also blocked the exacerbated erastin- and RSL3-induced ferroptosis of Nrf2-knockdown HT22 cells. In both HT22 cells, quercetin and resveratrol blocked erastin- and RSL3-induced elevation in reactive oxygen species. These results suggest that the Nrf2-ARE pathway does protect against ferroptosis, but quercetin and resveratrol act by reducing oxidative stress independently of Nrf2-ARE induction. Quercetin and resveratrol also reduced Fe2+ concentrations in HT22 cells and in cell-free reactions. Thus, quercetin and resveratrol likely protect against erastin- and RSL3-induced ferroptosis by inhibiting the iron-catalyzed generation of hydroxyl radicals. Unlike quercetin, resveratrol cannot form a chelate structure with Fe2+ but the density functional theory computation demonstrates that resveratrol can form stable monodentate complexes with the alkene moiety and the electron-rich A ring.
Assuntos
Ferroptose , Camundongos , Animais , Resveratrol/farmacologia , Quercetina/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Elementos de Resposta Antioxidante , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hipocampo/metabolismoRESUMO
We previously reported that N,N-dimethylaniline derivatives are potent ferroptosis inhibitors. Among them, the novel aminoindan derivative GIF-2197-r (the racemate of GIF-2115 (R-form) and GIF-2196 (S-form)) is effective at a concentration of 0.01 µM due to its localization to lysosomes and ferrous ion coordination capacity. The current study demonstrates that the aliphatic tertiary amine moiety of GIF-2197-r is responsible for lysosomal localization. Although N,N-dimethylaniline derivatives cannot form chelate structures with Fe2+, density functional theory computation demonstrates that they can form stable monodentate complexes with a hydrated ferrous ion, likely due to the highly electron-rich nature of the (dialkylamino)phenyl ring. Furthermore, the results suggest that the aliphatic tertiary amine moiety contributes to stabilizing the complexation. These findings could prove useful for developing improved lysosomotropic ferroptosis inhibitors for neurodegenerative diseases.
RESUMO
UNLABELLED: ABBACKGROUND: Early stages of fruit development from initial set through exponential growth are critical determinants of size and yield, however, there has been little detailed analysis of this phase of development. In this study we combined morphological analysis with 454 pyrosequencing to study transcript level changes occurring in young cucumber fruit at five ages from anthesis through the end of exponential growth. RESULTS: The fruit samples produced 1.13 million ESTs which were assembled into 27,859 contigs with a mean length of 834 base pairs and a mean of 67 reads per contig. All contigs were mapped to the cucumber genome. Principal component analysis separated the fruit ages into three groups corresponding with cell division/pre-exponential growth (0 and 4 days post pollination (dpp)), peak exponential expansion (8dpp), and late/post-exponential expansion stages of growth (12 and 16 dpp). Transcripts predominantly expressed at 0 and 4 dpp included homologs of histones, cyclins, and plastid and photosynthesis related genes. The group of genes with peak transcript levels at 8dpp included cytoskeleton, cell wall, lipid metabolism and phloem related proteins. This group was also dominated by genes with unknown function or without known homologs outside of cucurbits. A second shift in transcript profile was observed at 12-16dpp, which was characterized by abiotic and biotic stress related genes and significant enrichment for transcription factor gene homologs, including many associated with stress response and development. CONCLUSIONS: The transcriptome data coupled with morphological analyses provide an informative picture of early fruit development. Progressive waves of transcript abundance were associated with cell division, development of photosynthetic capacity, cell expansion and fruit growth, phloem activity, protection of the fruit surface, and finally transition away from fruit growth toward a stage of enhanced stress responses. These results suggest that the interval between expansive growth and ripening includes further developmental differentiation with an emphasis on defense. The increased transcript levels of cucurbit-specific genes during the exponential growth stage may indicate unique factors contributing to rapid growth in cucurbits.
Assuntos
Cucumis sativus/genética , Frutas/genética , Perfilação da Expressão Gênica/métodos , Cucumis sativus/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologiaRESUMO
We developed a method to convert a nucleoside 5'-H-boranophosphonate monoester into the corresponding nucleoside 5'-boranophosphorothioate monoester through temporary protection of the H-boranophosphonate monoester moiety as a diester with 9-fluorenylmethanol, subsequent sulfurization of the P-H group and removal of the 9-fluorenylmethyl group. Although the isolation of the resultant boranophosphorothioate monoester was found to be difficult due to instability of the compound, this new method proved to be useful to synthesize some conjugates of the nucleoside 5'-boranophosphorothioate with other biomolecules, such as cholesterol and an amino acid.
Assuntos
Ésteres/química , Nucleosídeos/síntese química , Compostos de Sulfidrila/química , Estrutura Molecular , FosforilaçãoAssuntos
Angiofibroma/diagnóstico , Angiofibroma/genética , Coativador 2 de Receptor Nuclear/genética , Neoplasias de Tecidos Moles/diagnóstico , Neoplasias de Tecidos Moles/genética , Angiofibroma/cirurgia , Biópsia , Bochecha , Diagnóstico Diferencial , Feminino , Rearranjo Gênico , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Neoplasias de Tecidos Moles/cirurgiaRESUMO
This article describes the detailed protocol for the synthesis of "truncated" carbocyclic nucleosides with a cyclopentene core and without a 4'-hydroxymethyl group. The synthesis was performed using 5'-deoxy-5'-heteroarylsulfonylnucleosides, which were prepared by the 5'-O-mesylation of the appropriately protected nucleosides, followed by a nucleophilic substitution with heteroarylthiols and the oxidation of the resulting 5'-S-heteroaryl-5'-thionucleosides. The treatment of the 5'-deoxy-5'-heteroarylsulfonylnucleosides with 1,8-diazabicyclo[5.4.0]undec-7-ene affords the truncated carbocyclic nucleosides, presumably via a domino reaction involving the α-deprotonation of the heteroarylsulfone, elimination of the nucleobase, formation of an α,ß-unsaturated sulfone, Michael addition of the nucleobase to the α,ß-unsaturated sulfone, and an intramolecular Julia-Kocienski reaction. This protocol would be useful for the short-step synthesis of biologically active carbocyclic nucleosides. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of 5'-deoxy-5'-heteroarylsulfonylnucleosides Basic Protocol 2: Synthesis of truncated carbocyclic nucleosides.