RESUMO
COVID-19 pandemic caused by SARS-CoV-2 infection is a public health emergency. COVID-19 typically exhibits respiratory illness. Unexpectedly, emerging clinical reports indicate that neurological symptoms continue to rise, suggesting detrimental effects of SARS-CoV-2 on the central nervous system (CNS). Here, we show that a Düsseldorf isolate of SARS-CoV-2 enters 3D human brain organoids within 2 days of exposure. We identified that SARS-CoV-2 preferably targets neurons of brain organoids. Imaging neurons of organoids reveal that SARS-CoV-2 exposure is associated with altered distribution of Tau from axons to soma, hyperphosphorylation, and apparent neuronal death. Our studies, therefore, provide initial insights into the potential neurotoxic effect of SARS-CoV-2 and emphasize that brain organoids could model CNS pathologies of COVID-19.
Assuntos
Betacoronavirus/fisiologia , Encéfalo/virologia , Neurônios/virologia , Animais , Morte Celular , Chlorocebus aethiops , Humanos , Doenças do Sistema Nervoso/virologia , Organoides , SARS-CoV-2 , Células Vero , Proteínas tau/metabolismoRESUMO
Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important prophylactic measure in kidney transplant recipients (KTRs), but the immune response is often impaired. Here, we examined the T-cell immune response against SARS-CoV-2 in 148 KTRs after 3 or 4 vaccine doses, including 35 KTRs with subsequent SARS-CoV-2 infection. The frequency of spike-specific T cells was lower in KTRs than in immunocompetent controls and was correlated with the level of spike-specific antibodies. Positive predictors for detection of vaccine-induced T cells were detection of spike-specific antibodies, heterologous immunization with messenger RNA and a vector vaccine, and longer time after transplantation. In vaccinated KTRs with subsequent SARS-CoV-2 infection, the T-cell response was greatly enhanced and was significantly higher than in vaccinated KTRs without SARS-CoV-2 infection. Overall, the data show a correlation between impaired humoral and T-cell immunity to SARS-CoV-2 vaccination and provide evidence for greater robustness of hybrid immunity in KTRs.
Assuntos
COVID-19 , Transplante de Rim , Vacinas , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Linfócitos T , Transplantados , Anticorpos , ImunidadeRESUMO
BACKGROUND: Tracing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission chains is still a major challenge for public health authorities, when incidental contacts are not recalled or are not perceived as potential risk contacts. Viral sequencing can address key questions about SARS-CoV-2 evolution and may support reconstruction of viral transmission networks by integration of molecular epidemiology into classical contact tracing. METHODS: In collaboration with local public health authorities, we set up an integrated system of genomic surveillance in an urban setting, combining a) viral surveillance sequencing, b) genetically based identification of infection clusters in the population, c) integration of public health authority contact tracing data, and d) a user-friendly dashboard application as a central data analysis platform. RESULTS: Application of the integrated system from August to December 2020 enabled a characterization of viral population structure, analysis of 4 outbreaks at a maximum care hospital, and genetically based identification of 5 putative population infection clusters, all of which were confirmed by contact tracing. The system contributed to the development of improved hospital infection control and prevention measures and enabled the identification of previously unrecognized transmission chains, involving a martial arts gym and establishing a link between the hospital to the local population. CONCLUSIONS: Integrated systems of genomic surveillance could contribute to the monitoring and, potentially, improved management of SARS-CoV-2 transmission in the population.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Busca de Comunicante , Surtos de Doenças/prevenção & controle , Genômica , Humanos , SARS-CoV-2/genéticaRESUMO
Kidney transplant recipients (KTRs) are extremely vulnerable to SARS-CoV-2 infection and show an impaired immune response to SARS-CoV-2 vaccination. We analyzed factors related to vaccination efficiency in KTRs. In a multicenter prospective observational study (NCT04743947), IgG antibodies levels against SARS-CoV-2 spike S1 subunit and their neutralization capacity after SARS-CoV-2 vaccination were analyzed in 225 KTRs and compared to 176 controls. After the vaccination, 56 (24.9%) KTRs became seropositive of whom 68% had neutralizing antibodies. This immune response was significantly lower compared to controls (239 [78-519] BAU/ml versus 1826 [560-3180] BAU/ml for KTRs and controls, p < .0001). The strongest predictor for an impaired response was mycophenolate mofetil (MMF) treatment. Multivariate regression analysis revealed that MMF-free regimen was highly associated with seroconversion (OR 13.25, 95% CI 3.22-54.6; p < .001). In contrast, other immunosuppressive drugs had no significant influence. 187 out of 225 KTRs were treated with MMF of whom 26 (13.9%) developed antibodies. 23 of these seropositive KTRs had a daily MMF dose ≤1 g. Furthermore, higher trough MMF concentrations correlated with lower antibody titers (R -0.354, p < .001) supporting a dose-dependent unfavorable effect of MMF. Our data indicate that MMF dose modification could lead to an improved immune response.
Assuntos
COVID-19 , Transplante de Rim , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Imunidade , Transplante de Rim/efeitos adversos , Ácido Micofenólico/uso terapêutico , SARS-CoV-2 , Transplantados , VacinaçãoRESUMO
We used enzyme-linked immunoassay methods to measure the prevalence and the levels of antibody responses to the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and four seasonal human coronaviruses (HCoV-OC43, HCoV-HKU1, HCoV 229E, and HCoV-NL63) in a cohort of 115 convalescent plasma donors infected with SARS-CoV-2 (1-61 days after symptom onset) compared to antibody levels in 114 individuals with no evidence of a recent infection with SARS-CoV-2. In the humoral response to the four seasonal coronaviruses, only HCoV-HKU1- and HCoV-229E-assays showed slightly elevated antibody levels in the COVID group compared to the control group. While in the COVID-group the levels of SARS-CoV-2 antibodies correlated significantly with disease severity, no association was found in the levels of antibodies against the seasonal coronaviruses. The most striking result in both groups was that the levels of antibodies against all tested coronaviruses, including the new SARS-CoV-2 showed a highly significant correlation with each other. There seems to be an individual predisposition to a weaker or stronger humoral immune response against all known seasonal human coronaviruses including the new SARS-CoV-2, which could lead to a definition of low and high responders against human coronaviruses with potential impact on the assessment of postinfection antibody levels and protection.
Assuntos
COVID-19 , Coronavirus Humano 229E , COVID-19/terapia , Reações Cruzadas , Humanos , Imunização Passiva , SARS-CoV-2 , Estações do Ano , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19RESUMO
Modification of vaccination strategies is necessary to improve the immune response to SARS-CoV-2 vaccination in kidney transplant recipients (KTRs). This multicenter observational study analyzed the effects of the third SARS-CoV-2 vaccination in previously seronegative KTRs with the focus on temporary mycophenolate mofetil (MMF) dose reduction within propensity matched KTRs. 56 out of 174 (32%) previously seronegative KTRs became seropositive after the third vaccination with only three KTRs developing neutralizing antibodies against the omicron variant. Multivariate logistic regression revealed that initial antibody levels, graft function, time after transplantation and MMF trough levels had an influence on seroconversion (P < .05). After controlling for confounders, the effect of MMF dose reduction before the third vaccination was calculated using propensity score matching. KTRs with a dose reduction of ≥33% showed a significant decrease in MMF trough levels to 1.8 (1.2-2.5) µg/ml and were more likely to seroconvert than matched controls (P = .02). Therefore, a MMF dose reduction of 33% or more before vaccination is a promising approach to improve success of SARS-CoV-2 vaccination in KTRs.
Assuntos
COVID-19 , Transplante de Rim , Humanos , Ácido Micofenólico/uso terapêutico , Vacinas contra COVID-19 , Rejeição de Enxerto , Imunossupressores/uso terapêutico , Imunossupressores/farmacologia , SARS-CoV-2 , COVID-19/prevenção & controle , Transplantados , ImunidadeRESUMO
BackgroundTracking person-to-person SARS-CoV-2 transmission in the population is important to understand the epidemiology of community transmission and may contribute to the containment of SARS-CoV-2. Neither contact tracing nor genomic surveillance alone, however, are typically sufficient to achieve this objective.AimWe demonstrate the successful application of the integrated genomic surveillance (IGS) system of the German city of Düsseldorf for tracing SARS-CoV-2 transmission chains in the population as well as detecting and investigating travel-associated SARS-CoV-2 infection clusters.MethodsGenomic surveillance, phylogenetic analysis, and structured case interviews were integrated to elucidate two genetically defined clusters of SARS-CoV-2 isolates detected by IGS in Düsseldorf in July 2021.ResultsCluster 1 (n = 67 Düsseldorf cases) and Cluster 2 (n = 36) were detected in a surveillance dataset of 518 high-quality SARS-CoV-2 genomes from Düsseldorf (53% of total cases, sampled mid-June to July 2021). Cluster 1 could be traced back to a complex pattern of transmission in nightlife venues following a putative importation by a SARS-CoV-2-infected return traveller (IP) in late June; 28 SARS-CoV-2 cases could be epidemiologically directly linked to IP. Supported by viral genome data from Spain, Cluster 2 was shown to represent multiple independent introduction events of a viral strain circulating in Catalonia and other European countries, followed by diffuse community transmission in Düsseldorf.ConclusionIGS enabled high-resolution tracing of SARS-CoV-2 transmission in an internationally connected city during community transmission and provided infection chain-level evidence of the downstream propagation of travel-imported SARS-CoV-2 cases.
Assuntos
COVID-19 , Doenças Transmissíveis Importadas , Humanos , SARS-CoV-2/genética , Viagem , Doenças Transmissíveis Importadas/epidemiologia , COVID-19/epidemiologia , Filogenia , Busca de Comunicante , Alemanha/epidemiologia , GenômicaRESUMO
BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has led to the development of various vaccines. Real-life data on immune responses elicited in the most vulnerable group of vaccinees older than age 80 years old are still underrepresented despite the prioritization of the elderly in vaccination campaigns. METHODS: We conducted a cohort study with 2 age groups, young vaccinees below the age of 60 years and elderly vaccinees over the age of 80 years, to compare their antibody responses to the first and second dose of the BNT162b2 coronavirus disease 2019 vaccination. RESULTS: Although the majority of participants in both groups produced specific immunoglobulin G antibody titers against SARS-CoV-2 spike protein, titers were significantly lower in elderly participants. Although the increment of antibody levels after the second immunization was higher in elderly participants, the absolute mean titer of this group remained lower than the <60 years of age group. After the second vaccination, 31.3% of the elderly had no detectable neutralizing antibodies in contrast to the younger group, in which only 2.2% had no detectable neutralizing antibodies. CONCLUSIONS: Our data showed differences between the antibody responses raised after the first and second BNT162b2 vaccination, in particular lower frequencies of neutralizing antibodies in the elderly group. This suggests that this population needs to be closely monitored and may require earlier revaccination and/or an increased vaccine dose to ensure stronger long-lasting immunity and protection against infection.
Assuntos
Vacina BNT162 , COVID-19 , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Estudos de Coortes , Feminino , Humanos , Imunidade , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologia , VacinaçãoRESUMO
Evaluation and power of seroprevalence studies depend on the performed serological assays. The aim of this study was to assess four commercial serological tests from EUROIMMUN, DiaSorin, Abbott, and Roche as well as an in-house immunofluorescence and neutralization test for their capability to identify SARS-CoV-2 seropositive individuals in a high-prevalence setting. Therefore, 42 social and working contacts of a German super-spreader were tested. Consistent with a high-prevalence setting, 26 of 42 were SARS-CoV-2 seropositive by neutralization test (NT), and immunofluorescence test (IFT) confirmed 23 of these 26 positive test results (NT 61.9% and IFT 54.8% seroprevalence). Four commercial assays detected anti-SARS-CoV-2 antibodies in 33.3-40.5% individuals. Besides an overall discrepancy between the NT and the commercial assays regarding their sensitivity, this study revealed that commercial SARS-CoV-2 spike-based assays are better to predict the neutralization titer than nucleoprotein-based assays are.
Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2/isolamento & purificação , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/sangue , Teste Sorológico para COVID-19/normas , Busca de Comunicante , Feminino , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Prevalência , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Adulto JovemRESUMO
We whole-genome sequenced 55 SARS-CoV-2 isolates from Germany to investigate SARS-CoV-2 outbreaks in 2020 in the Heinsberg district and Düsseldorf. While the genetic structure of the Heinsberg outbreak indicates a clonal origin, reflecting superspreading dynamics from mid-February during the carnival season, distinct viral strains were circulating in Düsseldorf in March, reflecting the city's international links. Limited detection of Heinsberg strains in the Düsseldorf area despite geographical proximity may reflect efficient containment and contact-tracing efforts.
Assuntos
Betacoronavirus/genética , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Genoma Viral/genética , Pandemias , Pneumonia Viral/diagnóstico , Sequenciamento Completo do Genoma/métodos , Betacoronavirus/isolamento & purificação , Betacoronavirus/patogenicidade , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/epidemiologia , Surtos de Doenças , Alemanha/epidemiologia , Humanos , Pneumonia Viral/epidemiologia , DNA Polimerase Dirigida por RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2RESUMO
Background: Despite the availability of vaccines, there is an increasing number of SARS-CoV-2-breakthrough-infections. OBJECTIVE: The aim of this study was to determine whether there is a radiological difference in lung parenchymal involvement between infected vaccinated and unvaccinated patients. Additionally, we aimed to investigate whether vaccination has an impact on the course of illness and the need for intensive care. METHODS: This study includes all patients undergoing chest computed tomography (CT) or x-ray imaging in case of a proven SARS-CoV-2 infection between September and November 2021. Anonymized CT and x-ray images were reviewed retrospectively and in consensus by two radiologists, applying an internal severity score scheme for CT and x-ray as well as CARE and BRIXIA scores for x-ray. Radiological findings were compared to vaccination status, comorbidities, inpatient course of the patient's illness and the subjective onset of symptoms. RESULTS: In total, 38 patients with acute SARS-CoV-2 infection underwent a CT scan, and 168 patients underwent an x-ray examination during the study period. Of these, 32% were vaccinated in the CT group, and 45% in the x-ray group. For the latter, vaccinated patients exhibited significantly more comorbidities (cardiovascular (p=0.002), haemato-oncological diseases (p=0.016), immunosuppression (p=0.004)), and a higher age (p<0.001). Vaccinated groups showed significantly lower extent of lung involvement (severity scores in CT cohort and x-ray cohort both p≤0.020; ARDS 42% in unvaccinated CT cohort vs. 8% in vaccinated CT cohort). Furthermore, vaccinated patients in the CT cohort had significantly less need for intensive care treatment (p=0.040). CONCLUSION: Our data suggest that vaccination, in the case of breakthrough infection, favours a milder course of illness concerning lung parenchymal involvement and the need for intensive care, despite negative predictors, such as immunosuppression or other pre-existing conditions.
.RESUMO
We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious viruses in multiple cell culture models for all six families of viruses causing most respiratory diseases in humans. In animals, this chemotype has been demonstrated efficacious for porcine epidemic diarrhoea virus (a coronavirus) and respiratory syncytial virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral life cycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. An advanced analog, PAV-104, is shown to be selective for the virally modified target, thereby avoiding host toxicity. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.
Assuntos
Antivirais , Antivirais/farmacologia , Antivirais/química , Humanos , Animais , Proteínas 14-3-3/metabolismo , Complexos Multiproteicos/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Linhagem CelularRESUMO
The COVID-19 pandemic has greatly impacted the global economy and health care systems, illustrating the urgent need for timely and inexpensive responses to pandemic threats in the form of vaccines and antigen tests. Currently, antigen testing is mostly conducted by qualitative flow chromatography or via quantitative ELISA-type assays. The latter mostly utilize materials like protein-adhesive polymers and gold or latex particles. Here we present an alternative ELISA approach using inexpensive, biogenic materials and permitting quick detection based on components produced in the microbial model Ustilago maydis. In this fungus, heterologous proteins like biopharmaceuticals can be exported by fusion to unconventionally secreted chitinase Cts1. As a unique feature, the carrier chitinase binds to chitin allowing its additional use as a purification or immobilization tag. Recent work has demonstrated that nanobodies are suitable target proteins. These proteins represent a very versatile alternative antibody format and can quickly be adapted to detect novel antigens by camelidae immunization or synthetic libraries. In this study, we exemplarily produced different mono- and bivalent SARS-CoV-2 nanobodies directed against the spike protein receptor binding domain (RBD) as Cts1 fusions and screened their antigen binding affinity in vitro and in vivo. Functional nanobody-Cts1 fusions were immobilized on chitin forming an RBD tethering surface. This provides a solid base for future development of inexpensive antigen tests utilizing unconventionally secreted nanobodies as antigen trap and a matching ubiquitous and biogenic surface for immobilization.
Assuntos
COVID-19 , Quitinases , Anticorpos de Domínio Único , Ustilago , Humanos , Ustilago/genética , Ustilago/metabolismo , Quitina/metabolismo , Pandemias , SARS-CoV-2/metabolismo , Quitinases/metabolismoRESUMO
BACKGROUND: As of today, the effect of coronavirus disease 2019 (COVID-19) on male fertility remains unclear. Studies published so far have partly contradictory results, likely due to very small sample sizes and heterogeneous populations. To gain a deeper understanding of the impact of COVID-19 on male fertility, we performed a prospective case-control study, in which we examined the ejaculate of 37 subjects, including 25 subjects in the acute phase of mild COVID-19 and 12 subjects who did not suffer from COVID-19. Determination of semen parameters, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) qPCR, and infectivity analysis were performed in the acute phase of the disease and in series. RESULTS: Semen parameter values did not differ significantly between subjects with mild COVID-19 and the control group. The serial examination of semen parameters revealed no significant changes between 4, 18, and 82 days after the onset of symptoms. SARS-CoV-2 RNA or infectious particles could not be detected in any ejaculate. CONCLUSION: Mild COVID-19 seems to have no detrimental effect on semen parameter values.
RéSUMé: CONTEXTE: À ce jour, l'effet de la maladie due au coronavirus 2019 (COVID-19) sur la fertilité masculine reste incertain. Les études publiées jusqu'à présent ont des résultats partiellement contradictoires, ce qui est probablement dû à la très petite taille des échantillons et l'hétérogénéité des populations. Pour mieux comprendre l'impact de la COVID-19 sur la fertilité masculine, nous avons réalisé une étude cas-témoins prospective, dans laquelle nous avons examiné l'éjaculat de 37 sujets, dont 25 sujets en phase aiguë de COVID-19 légère et 12 sujets qui ne souffraient pas de la COVID-19. La détermination des paramètres séminaux, la qPCR du coronavirus du syndrome respiratoire aigu sévère de type 2 (SRAS-CoV-2), et l'analyse de l'infectiosité ont été effectuées dans la phase aiguë de la maladie et dans la série. RéSULTATS: Les valeurs des paramètres du sperme ne différaient pas significativement entre les hommes atteints de la COVID-19 légère et ceux du groupe témoin. L'examen en série des paramètres du sperme n'a révélé aucun changement significatif entre 4, 18 et 82 jours après l'apparition des symptômes. L'ARN du SARS-CoV-2 ou les particules infectieuses n'ont été détectés dans aucun des éjaculats. CONCLUSION: La COVID-19 de forme légère ne semble pas avoir d'effet néfaste sur les valeurs des paramètres du sperme.
RESUMO
Determining SARS-CoV-2 immunity is critical to assess COVID-19 risk and the need for prevention and mitigation strategies. We measured SARS-CoV-2 Spike/Nucleocapsid seroprevalence and serum neutralizing activity against Wu01, BA.4/5 and BQ.1.1 in a convenience sample of 1,411 patients receiving medical treatment in the emergency departments of five university hospitals in North Rhine-Westphalia, Germany, in August/September 2022. 62% reported underlying medical conditions and 67.7% were vaccinated according to German COVID-19 vaccination recommendations (13.9% fully vaccinated, 54.3% one booster, 23.4% two boosters). We detected Spike-IgG in 95.6%, Nucleocapsid-IgG in 24.0%, and neutralization against Wu01, BA.4/5 and BQ.1.1 in 94.4%, 85.0%, and 73.8% of participants, respectively. Neutralization against BA.4/5 and BQ.1.1 was 5.6- and 23.4-fold lower compared to Wu01. Accuracy of S-IgG detection for determination of neutralizing activity against BQ.1.1 was reduced substantially. We explored previous vaccinations and infections as correlates of BQ.1.1 neutralization using multivariable and Bayesian network analyses. Given a rather moderate adherence to COVID-19 vaccination recommendations, this analysis highlights the need to improve vaccine-uptake to reduce the COVID-19 risk of immune evasive variants. The study was registered as clinical trial (DRKS00029414).
Assuntos
COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Teorema de Bayes , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunidade Humoral , Imunoglobulina G , SARS-CoV-2 , Estudos Soroepidemiológicos , VacinaçãoRESUMO
Determination of neutralizing antibody titers is still considered the gold standard for infection protection. A full virus neutralization test (VNT) with replication-competent, infectious SARS-CoV-2, is labor-intensive and requires Biosafety Level 3 certified laboratories. Therefore, several commercial SARS-CoV-2 surrogate virus neutralization tests (sVNTs) have been developed that aim to detect neutralizing antibodies targeting the receptor binding domain (RBD) of the viral spike glycoprotein (S). Neutralizing antibodies to the RBD block its interaction with the angiotensin-converting enzyme 2 (ACE2) receptor protein. Here, we compared a full virus neutralization test (VNT) with two SARS-CoV-2 surrogate virus neutralization tests (sVNT) and validated them in two cohorts of i) convalescent SARS-CoV-2-infected individuals and ii) COVID vaccinated individuals. The sVNTs showed highly different results both, compared to the VNT-titers and also between the two cohorts. This indicates that currently, sVNT provide a qualitative instead of a quantitative measurement of neutralizing antibodies. The findings in this work show that the cutoff levels for sVNTs might need to be readjusted for convalescent and vaccinated individuals.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Testes de Neutralização , Glicoproteína da Espícula de CoronavírusRESUMO
PURPOSE: To assess whether it is possible to reliably detect patients with strong suspicion of COVID-19 despite initially negative quantitative polymerase-chain-reaction (qPCR) tests by means of computed tomography (CT). MATERIALS AND METHODS: 437 patients with suspected COVID-19 but initially negative qPCR and subsequent chest CT between March 13 and November 30, 2020 were included in this retrospective study. CT findings were compared to results of successive qPCR tests (minimum of 3 qPCR tests if CT suggested infection) to determine the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of CT for diagnosing COVID-19. RESULTS: COVID-19 was diagnosed correctly with a sensitivity of 100â% [95â% confidence interval (CI): 65-100] and a specificity of 88â% [95â% CI: 84-90]. A PPV of 12â% [95â% CI: 6-22] and an NPV of 100â% [95â% CI: 99-100] were determined. CONCLUSION: CT is able to detect COVID-19 before qPCR in initially negative patients in this special study setting. Similar CT findings in COVID-19 and other atypical pneumonias can lead to high numbers of false-positive patients, reducing the specificity of CT. KEY POINTS: · Low-dose chest CT is able to diagnose COVID-19 in symptomatic patients even in cases of an initially negative quantitative PCR result and therefore is a fast support method to detect COVID-19, especially in early disease.. · Low-dose chest CT can reliably exclude COVID-19 in a pandemic setting.. · CT does not always ensure a reliable differentiation from other viral diseases.. CITATION FORMAT: · Valentin B, Steuwe A, Wienemann T, etâal. CT Findings in Patients with COVID-19-Compatible Symptoms but Initially Negative qPCR Test. Fortschr Röntgenstr 2022; 194: 1110â-â1118.
Assuntos
COVID-19 , COVID-19/diagnóstico por imagem , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodosRESUMO
We provide follow-up data on the humoral immune response after COVID-19 vaccinations of two distinct cohorts aged below 60 and over 80 years to screen for age-related differences in the longevity and magnitude of the induction of the antibody responses post booster-vaccinations. While anti-SARS-CoV-2 spike-specific IgG and neutralization capacity waned rapidly after the initial vaccination schedule, additional boosters highly benefitted the humoral immune responses especially in the elderly cohort, including the neutralization of Omikron variants. Thus, adjusted COVID-19 booster vaccination schedules are an appropriate tool to overcome limitations in the success of vaccinations.
RESUMO
PURPOSE: Classifications were created to facilitate radiological evaluation of the novel coronavirus disease 2019 (COVID-19) on computed tomography (CT) images. The categorical CT assessment scheme (CO-RADS) categorizes lung parenchymal changes according to their likelihood of being caused by SARS-CoV-2 infection. This study investigates the diagnostic accuracy of diagnosing COVID-19 with CO-RADS compared to the Thoracic Imaging Section of the German Radiological Society (DRG) classification and Radiological Society of North America (RSNA) classification in an anonymized patient cohort. To mimic advanced disease stages, follow-up examinations were included as well. METHOD: This study includes all patients undergoing chest CT in the case of a suspected SARS-CoV-2 infection or an already confirmed infection between March 13 and November 30, 2020. During the study period, two regional lockdowns occurred due to high incidence values, increasing the pre-test probability of COVID-19. Anonymized CT images were reviewed retrospectively and in consensus by two radiologists applying CO-RADS, DRG, and RSNA classification. Afterwards, CT findings were compared to results of sequential real-time reverse transcriptase polymerase chain reaction (qPCR) test performed during hospitalization to determine statistical analysis for diagnosing COVID-19. RESULTS: 536 CT examinations were included. CO-RADS, DRG and RSNA achieved an NPV of 96â%/94â%/95â% (CO-RADS/DRG/RSNA), PPV of 83â%/80â%/88â%, sensitivity of 86â%/76â%/80â%, and specificity of 96â%/95â%/97â%. The disease prevalence was 20â%. CONCLUSION: All applied classifications can reliably exclude a SARS-CoV-2 infection even in an anonymous setting. Nevertheless, pre-test probability was high in our study setting and has a great influence on the classifications. Therefore, the applicability of the individual classifications will become apparent in the future with lower prevalence and incidence of COVID-19. KEY POINTS: · CO-RADS, DRG, and RSNA classifications help to reliably detect infected patients in an anonymized setting. · Pre-test probability has a great influence on the individual classifications. · Difficulties in an anonymized study setting are severe pulmonary changes and residuals.. CITATION FORMAT: · Valentin B, Steuwe A, Wienemann T etâal. Applicability of CO-RADS in an Anonymized Cohort Including Early and Advanced Stages of COVID-19 in Comparison to the Recommendations of the German Radiological Society and Radiological Society of North America. Fortschr Röntgenstr 2022; 194: 862â-â872.
Assuntos
COVID-19 , COVID-19/diagnóstico por imagem , Controle de Doenças Transmissíveis , Humanos , América do Norte/epidemiologia , Estudos Retrospectivos , SARS-CoV-2RESUMO
We present a small molecule chemotype, identified by an orthogonal drug screen, exhibiting nanomolar activity against members of all the six viral families causing most human respiratory viral disease, with a demonstrated barrier to resistance development. Antiviral activity is shown in mammalian cells, including human primary bronchial epithelial cells cultured to an air-liquid interface and infected with SARS-CoV-2. In animals, efficacy of early compounds in the lead series is shown by survival (for a coronavirus) and viral load (for a paramyxovirus). The drug target is shown to include a subset of the protein 14-3-3 within a transient host multi-protein complex containing components implicated in viral lifecycles and in innate immunity. This multi-protein complex is modified upon viral infection and largely restored by drug treatment. Our findings suggest a new clinical therapeutic strategy for early treatment upon upper respiratory viral infection to prevent progression to lower respiratory tract or systemic disease. One Sentence Summary: A host-targeted drug to treat all respiratory viruses without viral resistance development.