Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7233, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433980

RESUMO

Climate extremes cause significant winter wheat yield loss and can cause much greater impacts than single extremes in isolation when multiple extremes occur simultaneously. Here we show that compound hot-dry-windy events (HDW) significantly increased in the U.S. Great Plains from 1982 to 2020. These HDW events were the most impactful drivers for wheat yield loss, accounting for a 4% yield reduction per 10 h of HDW during heading to maturity. Current HDW trends are associated with yield reduction rates of up to 0.09 t ha-1 per decade and HDW variations are atmospheric-bridged with the Pacific Decadal Oscillation. We quantify the "yield shock", which is spatially distributed, with the losses in severely HDW-affected areas, presumably the same areas affected by the Dust Bowl of the 1930s. Our findings indicate that compound HDW, which traditional risk assessments overlooked, have significant implications for the U.S. winter wheat production and beyond.


Assuntos
Triticum , Vento , Estações do Ano , Clima , Mudança Climática
2.
PLoS One ; 9(7): e100850, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24992684

RESUMO

Variations in spatio-temporal patterns of Human Monocytic Ehrlichiosis (HME) infection in the state of Kansas, USA were examined and the relationship between HME relative risk and various environmental, climatic and socio-economic variables were evaluated. HME data used in the study was reported to the Kansas Department of Health and Environment between years 2005-2012, and geospatial variables representing the physical environment [National Land cover/Land use, NASA Moderate Resolution Imaging Spectroradiometer (MODIS)], climate [NASA MODIS, Prediction of Worldwide Renewable Energy (POWER)], and socio-economic conditions (US Census Bureau) were derived from publicly available sources. Following univariate screening of candidate variables using logistic regressions, two Bayesian hierarchical models were fit; a partial spatio-temporal model with random effects and a spatio-temporal interaction term, and a second model that included additional covariate terms. The best fitting model revealed that spatio-temporal autocorrelation in Kansas increased steadily from 2005-2012, and identified poverty status, relative humidity, and an interactive factor, 'diurnal temperature range x mixed forest area' as significant county-level risk factors for HME. The identification of significant spatio-temporal pattern and new risk factors are important in the context of HME prevention, for future research in the areas of ecology and evolution of HME, and as well as climate change impacts on tick-borne diseases.


Assuntos
Ehrlichiose/epidemiologia , Análise Espaço-Temporal , Teorema de Bayes , Mudança Climática , Humanos , Kansas/epidemiologia , Fatores de Risco , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA