RESUMO
By comparing the structures of Bax and Bak megapores, Cosentino et al. (2022) reveal new insights suggesting the two pro-apoptotic proteins co-assemble into structures that release DNA from mitochondria and thereby trigger inflammation.
Assuntos
Membranas Mitocondriais , Proteína Killer-Antagonista Homóloga a bcl-2 , Apoptose , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismoRESUMO
We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.
Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Neoplasias Encefálicas/metabolismo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/metabolismo , Humanos , Masculino , Mutação , Proteoma/análise , Transdução de SinaisRESUMO
Current models of apoptosis regulation by the Bcl-2 family of proteins postulate that heterodimeric interactions between family members determine whether Bax and Bak are activated to trigger cell death. Thus, the relative abundance and binding affinities between pro- and anti-apoptotic proteins determines the outcome of these interactions. Examination of these interactions using purified mitochondria and liposomes with full-length recombinant proteins revealed that Bcl-xL inhibits apoptosis as a higher-order complex that binds multiple BH3 proteins. Allosteric regulation of this complex by the BH3 sensitizer Bad confers switch-like activity to the indirect activation of Bax. The BH3 activator cBid sequestered by Bcl-xL complexes changes from an inactive to an active form while bound to a Bcl-xL complex only when Bad is also bound. Bcl-xL complexes enable Bad to function as a non-competitive inhibitor of Bcl-xL and allosterically activate cBid, dramatically enhancing the pro-apoptotic potency of Bad.
Assuntos
Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo , Regulação Alostérica , Animais , Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Linhagem Celular , Humanos , Camundongos , Membranas Mitocondriais/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Proteína bcl-X/químicaRESUMO
Regulation of apoptosis by Bcl-2 family proteins is a paradigm for complex protein-protein and protein-membrane systems. Elucidating the molecular mechanisms of these interactions in vitro in live cells and in animal studies has been significantly enhanced by using fluorescence techniques.
Assuntos
Apoptose , Membranas Intracelulares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Fluorescência , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismoRESUMO
The Bcl-2 family controls apoptosis by direct interactions of pro- and anti-apoptotic proteins. The principle mechanism is binding of the BH3 domain of pro-apoptotic proteins to the hydrophobic groove of anti-apoptotic siblings, which is therapeutically exploited by approved BH3-mimetic anti-cancer drugs. Evidence suggests that also the transmembrane domain (TMD) of Bcl-2 proteins can mediate Bcl-2 interactions. We developed a highly-specific split luciferase assay enabling the analysis of TMD interactions of pore-forming apoptosis effectors BAX, BAK, and BOK with anti-apoptotic Bcl-2 proteins in living cells. We confirm homotypic interaction of the BAX-TMD, but also newly identify interaction of the TMD of anti-apoptotic BCL-2 with the TMD of BOK, a peculiar pro-apoptotic Bcl-2 protein. BOK-TMD and BCL-2-TMD interact at the endoplasmic reticulum. Molecular dynamics simulations confirm dynamic BOK-TMD and BCL-2-TMD dimers and stable heterotetramers. Mutation of BCL-2-TMD at predicted key residues abolishes interaction with BOK-TMD. Also, inhibition of BOK-induced apoptosis by BCL-2 depends specifically on their TMDs. Thus, TMDs of Bcl-2 proteins are a relevant interaction interface for apoptosis regulation and provide a novel potential drug target.
Assuntos
Apoptose , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/química , Humanos , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Retículo Endoplasmático/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/química , Domínios e Motivos de Interação entre Proteínas , Multimerização ProteicaRESUMO
Bax proteins form pores in the mitochondrial outer membrane to initiate apoptosis. This might involve their embedding in the cytosolic leaflet of the lipid bilayer, thus generating tension to induce a lipid pore with radially arranged lipids forming the wall. Alternatively, Bax proteins might comprise part of the pore wall. However, there is no unambiguous structural evidence for either hypothesis. Using NMR, we determined a high-resolution structure of the Bax core region, revealing a dimer with the nonpolar surface covering the lipid bilayer edge and the polar surface exposed to water. The dimer tilts from the bilayer normal, not only maximizing nonpolar interactions with lipid tails but also creating polar interactions between charged residues and lipid heads. Structure-guided mutations demonstrate the importance of both types of protein-lipid interactions in Bax pore assembly and core dimer configuration. Therefore, the Bax core dimer forms part of the proteolipid pore wall to permeabilize mitochondria.
Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/fisiologia , Humanos , Bicamadas Lipídicas/metabolismoRESUMO
Programmed cell death via the both intrinsic and extrinsic pathways is regulated by interactions of the Bcl-2 family protein members that determine whether the cell commits to apoptosis via mitochondrial outer membrane permeabilization (MOMP). Recently the conserved C-terminal sequences (CTSs) that mediate localization of Bcl-2 family proteins to intracellular membranes, have been shown to have additional protein-protein binding functions that contribute to the functions of these proteins in regulating MOMP. Here we review the pivotal role of CTSs in Bcl-2 family interactions including: (1) homotypic interactions between the pro-apoptotic executioner proteins that cause MOMP, (2) heterotypic interactions between pro-apoptotic and anti-apoptotic proteins that prevent MOMP, and (3) heterotypic interactions between the pro-apoptotic executioner proteins and the pro-apoptotic direct activator proteins that promote MOMP.
Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/química , Humanos , Apoptose/fisiologia , Animais , Membranas Mitocondriais/metabolismo , Ligação ProteicaRESUMO
The proapoptotic BCL-2 homology (BH3)-only endoplasmic reticulum (ER)-resident protein BCL-2 interacting killer (BIK) positively regulates mitochondrial outer membrane permeabilization, the point of no return in apoptosis. It is generally accepted that BIK functions at a distance from mitochondria by binding and sequestering antiapoptotic proteins at the ER, thereby promoting ER calcium release. Although BIK is predominantly localized to the ER, we detect by fluorescence lifetime imaging microscopy-FRET microscopy, BH3 region-dependent direct binding between BIK and mitochondria-localized chimeric mutants of the antiapoptotic proteins BCL-XL and BCL-2 in both baby mouse kidney (BMK) and MCF-7 cells. Direct binding was accompanied by cell type-specific differential relocalization in response to coexpression of either BIK or one of its target binding partners, BCL-XL, when coexpressed in cells. In BMK cells with genetic deletion of both BAX and BAK (BMK-double KO), our data suggest that a fraction of BIK protein moves toward mitochondria in response to the expression of a mitochondria-localized BCL-XL mutant. In contrast, in MCF-7 cells, our data suggest that BIK is localized at both ER and mitochondria-associated ER membranes and binds to the mitochondria-localized BCL-XL mutant via relocalization of BCL-XL to ER and mitochondria-associated ER membrane. Rather than functioning at a distance, our data suggest that BIK initiates mitochondrial outer membrane permeabilization via direct interactions with ER and mitochondria-localized antiapoptotic proteins, which occur via ER-mitochondria contact sites, and/or by relocalization of either BIK or antiapoptotic proteins in cells.
Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Retículo Endoplasmático , Proteínas Mitocondriais , Animais , Camundongos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
Goldspire™ is a personalized immunotherapy platform that combines whole tumor-derived cells with antisense oligonucleotide (IMV-001) against Insulin-Like Growth Factor-1 Receptor (IGF-1R) in biodiffusion chambers (BDCs; 0.1 µm pore). BDCs are exposed to 5-6 Gy and implanted at abdominal sites for â¼48 h to deliver an antigenic payload and immunostimulatory factors to train the immune system. Lead product IGV-001 was evaluated in newly diagnosed glioblastoma (ndGBM) patients in Phase 1a and 1b trials (NCT02507583). A Phase 2b study (NCT04485949) recently completed enrollment. Preventative treatment with tumor-specific products manufactured with Goldspire limited tumor progression and extended overall survival in mice challenged with bladder, pancreatic, ovarian, colorectal, or renal carcinomas. The benefit of this immunotherapy was enhanced with anti-PD-1; combination treatment was superior to either monotherapy in orthotopic GBM and melanoma models. Lastly, Goldspire elicited immune T cell activation and memory phenotypes against patient-derived endometrial tumor-derived products in co-cultures with matching immune cells.
RESUMO
Standard-of-care first-line therapy for patients with newly diagnosed glioblastoma (ndGBM) is maximal safe surgical resection, then concurrent radiotherapy and temozolomide, followed by maintenance temozolomide. IGV-001, the first product of the Goldspire™ platform, is a first-in-class autologous immunotherapeutic product that combines personalized whole tumor-derived cells with an antisense oligonucleotide (IMV-001) in implantable biodiffusion chambers, with the intent to induce a tumor-specific immune response in patients with ndGBM. Here, we describe the design and rationale of a randomized, double-blind, phase IIb trial evaluating IGV-001 compared with placebo, both followed by standard-of-care treatment in patients with ndGBM. The primary end point is progression-free survival, and key secondary end points include overall survival and safety.
Glioblastoma (GBM) is a fast-growing brain tumor that happens in about half of all gliomas. Surgery is the first treatment for patients with newly diagnosed GBM, followed by the usual radiation and chemotherapy pills named temozolomide. Temozolomide pills are then given as a long-term treatment. The outcome for the patient with newly diagnosed GBM remains poor. IGV-001 is specially made for each patient. The tumor cells are removed during surgery and mixed in the laboratory with a small DNA, IMV-001. This mix is the IGV-001 therapy that is designed to give antitumor immunity against GBM. IGV-001 is put into small biodiffusion chambers that are irradiated to stop the growth of any tumor cells in the chambers. In the phase IIb study, patients with newly diagnosed GBM are chosen and assigned to either the IGV-001 or the placebo group. A placebo does not contain any active ingredients. The small biodiffusion chambers containing either IGV-001 or placebo are surgically placed into the belly for 48 to 52 h and then removed. Patients then receive the usual radiation and chemotherapy treatment. Patients must be adults aged between 18 and 70 years. Patients also should be able to care for themselves overall, but may be unable to work or have lower ability to function. Patients with tumors on both sides of the brain are not eligible. The main point of this study is to see if IGV-001 helps patients live longer without making the illness worse compared with placebo. Clinical Trial Registration: NCT04485949 (ClinicalTrials.gov).
Assuntos
Neoplasias Encefálicas , Combinação de Medicamentos , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Oligonucleotídeos Antissenso/uso terapêutico , Intervalo Livre de Doença , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Imunoterapia , Antineoplásicos Alquilantes/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Despite MYC dysregulation in most human cancers, strategies to target this potent oncogenic driver remain an urgent unmet need. Recent evidence shows the PP1 phosphatase and its regulatory subunit PNUTS control MYC phosphorylation, chromatin occupancy, and stability, however the molecular basis remains unclear. Here we demonstrate that MYC interacts directly with PNUTS through the MYC homology Box 0 (MB0), a highly conserved region recently shown to be important for MYC oncogenic activity. By NMR we identified a distinct peptide motif within MB0 that interacts with PNUTS residues 1-148, a functional unit, here termed PNUTS amino-terminal domain (PAD). Using NMR spectroscopy we determined the solution structure of PAD, and characterised its MYC-binding patch. Point mutations of residues at the MYC-PNUTS interface significantly weaken their interaction both in vitro and in vivo, leading to elevated MYC phosphorylation. These data demonstrate that the MB0 region of MYC directly interacts with the PAD of PNUTS, which provides new insight into the control mechanisms of MYC as a regulator of gene transcription and a pervasive cancer driver.
Assuntos
Cromatina , Proteínas Nucleares , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Proteína Fosfatase 1/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
PURPOSE: To date, immunotherapeutic approaches in glioblastoma (GBM) have had limited clinical efficacy as compared to other solid tumors. Here we explore autologous cell treatments that have the potential to circumvent treatment resistance to immunotherapy for GBM. METHODS: We performed literature review and assessed clinical outcomes in phase 1 safety trials as well as phase 2 and 3 autologously-derived vaccines for the treatment of newly-diagnosed GBM. In one recent review of over 3,000 neuro-oncology phase 2 and phase 3 clinical trials, most trials were nonblinded (92%), single group (65%), nonrandomized (51%) and almost half were GBM trials. Only 10% involved a biologic and only 2.2% involved a double-blind randomized trial design. RESULTS: With this comparative literature review we conclude that our autologous cell product is uniquely antigen-inclusive and antigen-agnostic with a promising safety profile as well as unexpected clinical efficacy in our published phase 1b trial. We have since designed a rigorous double-blinded add-on placebo-controlled trial involving our implantable biologic drug device. We conclude that IGV-001 provides a novel immunotherapy platform for historically intransigent ndGBM in this ongoing phase 2b trial (NCT04485949).
Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Glioblastoma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Resultado do Tratamento , Imunoterapia , Vacinas Anticâncer/uso terapêutico , Craniotomia , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Patients with grade III anaplastic astrocytomas (AA) separate into survival cohorts based on the presence or absence of mutations in isocitrate dehydrogenase (IDH). Progression to glioblastoma (GBM), morphologically distinguishable by elevated microvascular proliferation, necrosis, and cell division in tumor tissues, is considerably more rapid in IDH wild-type tumors such that their diagnosis as AA is relatively rare. More often initially presenting as GBM, these contain higher numbers of tumor-associated macrophages (TAMs) than most AA, and GBM patients also have higher levels of circulating M2 monocytes. TAM and M2 monocytes share functional properties inhibitory for antitumor immunity. Yet, although there is a wealth of data implicating TAM in tumor-immune evasion, there has been limited analysis of the impact of the circulating M2 monocytes. In the current study, immune parameters in sera, circulating cells, and tumor tissues from patients with primary gliomas morphologically diagnosed as AA were assessed. Profound differences in serum cytokines, glioma extracellular vesicle cross-reactive Abs, and gene expression by circulating cells identified two distinct patient cohorts. Evidence of type 2-immune bias was most often seen in patients with IDH wild-type AA, whereas a type 1 bias was common in patients with tumors expressing the IDH1R132H mutation. Nevertheless, a patient's immune profile was better correlated with the extent of tumor vascular enhancement on magnetic resonance imaging than IDH mutational status. Regardless of IDH genotype, AA progression appears to be associated with a switch in systemic immune bias from type 1 to type 2 and the loss of tumor vasculature integrity.
Assuntos
Astrocitoma/imunologia , Glioblastoma/imunologia , Macrófagos Associados a Tumor/imunologia , Adulto , Sobreviventes de Câncer , Carcinogênese , Estudos de Coortes , Citocinas/metabolismo , Feminino , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Células Th1/imunologia , Equilíbrio Th1-Th2 , Células Th2/imunologiaRESUMO
In normal circumstances, the Bcl-2 family dutifully governs when cells die. However, the rules of engagement between the pro- and antiapoptotic family members are still contested, and how Bax is transformed from a cytosolic monomer to an outer mitochondrial membrane-permeabilizing oligomer is unclear. With fluorescence techniques and an in vitro system, the combination of tBid and Bax produced dramatic membrane permeabilization. The membrane is not a passive partner in this process beause membranes are required for the protein-protein interactions to occur. Simultaneous measurements of these interactions revealed an ordered series of steps required for outer membrane permeabilization: (1) tBid rapidly binds to membranes, where (2) tBid interacts with Bax, causing (3) Bax insertion into membranes and (4) oligomerization, culminating in (5) membrane permeabilization. Bcl-XL prevents membrane-bound tBid from binding Bax. Bad releases tBid from Bcl-XL, restoring both tBid binding to Bax and membrane permeabilization.
Assuntos
Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Membranas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Bovinos , Lipossomos/metabolismoRESUMO
OBJECTIVE: The clinical behavior of meningiomas is not entirely captured by its designated WHO grade, therefore other factors must be elucidated that portend increased tumor aggressiveness and associated risk of recurrence. In this study, the authors identify multiparametric MRI radiomic signatures of meningiomas using Ki-67 as a prognostic marker of clinical outcomes independent of WHO grade. METHODS: A retrospective analysis was conducted of all resected meningiomas between 2012 and 2018. Preoperative MR images were used for high-throughput radiomic feature extraction and subsequently used to develop a machine learning algorithm to stratify meningiomas based on Ki-67 indices < 5% and ≥ 5%, independent of WHO grade. Progression-free survival (PFS) was assessed based on machine learning prediction of Ki-67 strata and compared with outcomes based on histopathological Ki-67. RESULTS: Three hundred forty-three meningiomas were included: 291 with WHO grade I, 43 with grade II, and 9 with grade III. The overall rate of recurrence was 19.8% (15.1% in grade I, 44.2% in grade II, and 77.8% in grade III) over a median follow-up of 28.5 months. Grade II and III tumors had higher Ki-67 indices than grade I tumors, albeit tumor and peritumoral edema volumes had considerable variation independent of meningioma WHO grade. Forty-six high-performing radiomic features (1 morphological, 7 intensity-based, and 38 textural) were identified and used to build a support vector machine model to stratify tumors based on a Ki-67 cutoff of 5%, with resultant areas under the curve of 0.83 (95% CI 0.78-0.89) and 0.84 (95% CI 0.75-0.94) achieved for the discovery (n = 257) and validation (n = 86) data sets, respectively. Comparison of histopathological Ki-67 versus machine learning-predicted Ki-67 showed excellent performance (overall accuracy > 80%), with classification of grade I meningiomas exhibiting the greatest accuracy. Prediction of Ki-67 by machine learning classifier revealed shorter PFS for meningiomas with Ki-67 indices ≥ 5% compared with tumors with Ki-67 < 5% (p < 0.0001, log-rank test), which corroborates divergent patient outcomes observed using histopathological Ki-67. CONCLUSIONS: The Ki-67 proliferation index may serve as a surrogate marker of increased meningioma aggressiveness independent of WHO grade. Machine learning using radiomic feature analysis may be used for the preoperative prediction of meningioma Ki-67, which provides enhanced analytical insights to help improve diagnostic classification and guide patient-specific treatment strategies.
Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagem , Meningioma/cirurgia , Antígeno Ki-67 , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/cirurgia , Estudos Retrospectivos , Prognóstico , Proliferação de CélulasRESUMO
PURPOSE: Owing to their vicinity near the superior sagittal sinus, parasagittal and parafalcine meningiomas are challenging tumors to surgically resect. In this study, we investigate key factors that portend increased risk of recurrence after surgery. METHODS: This is a retrospective study of patients who underwent resection of parasagittal and parafalcine meningiomas at our institution between 2012 and 2018. Relevant clinical, radiographic, and histopathological variables were selected for analysis as predictors of tumor recurrence. RESULTS: A total of 110 consecutive subjects (mean age: 59.4 ± 15.2 years, 67.3% female) with 74 parasagittal and 36 parafalcine meningiomas (92 WHO grade 1, 18 WHO grade 2/3), are included in the study. A total of 37 patients (33.6%) exhibited recurrence with median follow-up of 42 months (IQR: 10-71). In the overall cohort, parasagittal meningiomas exhibited shorter progression-free survival compared to parafalcine meningiomas (Kaplan-Meier log-rank p = 0.045). On univariate analysis, predictors of recurrence include WHO grade 2/3 vs. grade 1 tumors (p < 0.001), higher Ki-67 indices (p < 0.001), partial (p = 0.04) or complete sinus invasion (p < 0.001), and subtotal resection (p < 0.001). Multivariable Cox regression analysis revealed high-grade meningiomas (HR: 3.62, 95% CI: 1.60-8.22; p = 0.002), complete sinus invasion (HR: 3.00, 95% CI: 1.16-7.79; p = 0.024), and subtotal resection (HR: 3.10, 95% CI: 1.38-6.96; p = 0.006) as independent factors that portend shorter time to recurrence. CONCLUSION: This study identifies several pertinent factors that confer increased risk of recurrence after resection of parasagittal and parafalcine meningiomas, which can be used to devise appropriate surgical strategy to achieve improved patient outcomes.
Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Meningioma/diagnóstico por imagem , Meningioma/cirurgia , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/cirurgia , Estudos Retrospectivos , Recidiva Local de Neoplasia/cirurgia , Recidiva Local de Neoplasia/patologia , Seio Sagital Superior/cirurgiaRESUMO
Current standard of care for glioblastoma (GBM) includes concurrent chemoradiation and maintenance temozolomide (TMZ) with Tumor Treating Fields (TTFields). Preclinical studies suggest TTFields and radiation treatment have synergistic effects. We conducted a pilot clinical trial of concurrent chemoradiation with TTFields and report pattern of progression. MATERIALS AND METHODS: This is a single arm pilot study (clinicaltrials.gov Identifier: NCT03477110). Adult patients (age ≥ 18 years) with KPS ≥ 60 with newly diagnosed GBM were eligible. All patients received concurrent scalp-sparing radiation (60 Gy in 30 fractions), standard concurrent TMZ and TTFields. Maintenance therapy included standard TMZ and continuation of TTFields. Radiation treatment was delivered through TTFields arrays. Incidence and location of progression was documented. Distant recurrence was defined as recurrence more than 2 cm from the primary enhancing lesion. RESULTS: Thirty patients were enrolled on the trial. Twenty were male with median age 58 years (19-77 years). Median KPS was 90 (70-100). Median follow-up was 15.2 months (1.7-23.6 months). Ten (33.3%) patients had a methylated promoter status. Twenty-seven patients (90%) had progression, with median PFS of 9.3 months (range 8.5 to 11.6 months). Six patients presented with distant recurrence, with median distance from primary lesion of 5.05 cm (2.26-6.95 cm). One infratentorial progression was noted. CONCLUSIONS: We observed improved local control using concurrent chemoradiation with TTFields for patients with newly diagnosed when compared to historical controls. Further data are needed to validate this finding. TRIAL REGISTRATION: Clinicaltrials.gov Identifier NCT03477110.
Assuntos
Neoplasias Encefálicas , Terapia por Estimulação Elétrica , Glioblastoma , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Terapia Combinada , Glioblastoma/tratamento farmacológico , Projetos Piloto , Temozolomida/uso terapêutico , Adulto Jovem , IdosoRESUMO
Phenotypic profiling of large three-dimensional microscopy data sets has not been widely adopted due to the challenges posed by cell segmentation and feature selection. The computational demands of automated processing further limit analysis of hard-to-segment images such as of neurons and organoids. Here we describe a comprehensive shallow-learning framework for automated quantitative phenotyping of three-dimensional (3D) image data using unsupervised data-driven voxel-based feature learning, which enables computationally facile classification, clustering and advanced data visualization. We demonstrate the analysis potential on complex 3D images by investigating the phenotypic alterations of: neurons in response to apoptosis-inducing treatments and morphogenesis for oncogene-expressing human mammary gland acinar organoids. Our novel implementation of image analysis algorithms called Phindr3D allowed rapid implementation of data-driven voxel-based feature learning into 3D high content analysis (HCA) operations and constitutes a major practical advance as the computed assignments represent the biology while preserving the heterogeneity of the underlying data. Phindr3D is provided as Matlab code and as a stand-alone program (https://github.com/DWALab/Phindr3D).
Assuntos
Imageamento Tridimensional/métodos , Aprendizado de Máquina , Glândulas Mamárias Humanas/patologia , Microscopia de Fluorescência/métodos , Neurônios/metabolismo , Neurônios/fisiologia , Organoides/fisiologia , Algoritmos , Animais , Apoptose , Autofagia , Encéfalo/embriologia , Linhagem Celular , Humanos , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Camundongos Endogâmicos C57BL , Organoides/metabolismo , Fenótipo , Linguagens de Programação , SoftwareRESUMO
In this issue, Bleicken et al. (2014) use double electron-electron resonance (DEER) spectroscopy to propose a new model for the active form of Bax at membranes that differs significantly from those previously proposed.
Assuntos
Membrana Celular/química , Proteína X Associada a bcl-2/química , AnimaisRESUMO
INTRODUCTION: Despite optimal surgical resection, meningiomas may recur, with increasing grade and the degree of resection being predictive of risk. We hypothesize that an increasing Ki67 correlates with a higher risk of recurrence of resected WHO grade I meningiomas. METHODS: The study population consisted of patients with resected WHO grade 1 meningiomas in locations outside of the base of skull. Digitally scanned slides stained for Ki67 were analyzed using automatic image analysis software in a standardized fashion. RESULTS: Recurrence was observed in 53 (17.7%) of cases with a median follow up time of 25.8 months. Ki67 ranged from 0 to 30%. Median Ki67 was 5.1% for patients with recurrence and 3.5% for patients without recurrence. In unadjusted analyses, high Ki-67 (≥ 5 vs. < 5) vs. ≥ 5) was associated with over a twofold increased risk of recurrence (13.1% vs. 27% respectively; HR 2.1731; 95% CI [1.2534, 3.764]; p = 0.006). After Adjusting for patient or tumor characteristics, elevated Ki-67 remained significantly correlated with recurrence. Grade 4 Simpson resection was noted in 71 (23.7%) of patients and it was associated with a significantly increased risk of recurrence (HR 2.56; 95% CI [1.41, 4.6364]; p = 0.002). CONCLUSIONS: WHO grade 1 meningiomas exhibit a significant rate of recurrence following resection. While Ki-67 is not part of the WHO grading criteria of meningiomas, a value greater than 5% is an independent predictor for increased risk of local recurrence following surgical resection.