Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 936-945, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153812

RESUMO

Methods to synthesize diverse collections of substituted piperidines are valuable due to the prevalence of this heterocycle in pharmaceutical compounds. Here, we present a general strategy to access N-(hetero)arylpiperidines using a pyridine ring-opening and ring-closing approach via Zincke imine intermediates. This process generates pyridinium salts from a wide variety of substituted pyridines and (heteroaryl)anilines; hydrogenation reactions and nucleophilic additions then access the N-(hetero)arylpiperidine derivatives. We successfully applied high-throughput experimentation (HTE) using pharmaceutically relevant pyridines and (heteroaryl)anilines as inputs and developed a one-pot process using anilines as nucleophiles in the pyridinium salt-forming processes. This strategy is viable for generating piperidine libraries and applications such as the convergent coupling of complex fragments.

2.
J Am Chem Soc ; 144(5): 2225-2232, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35077169

RESUMO

Use of a tunable molecular scaffold to align a reactive diad for bifunctional catalysis can reveal relationships between functional group identity and reactivity that might otherwise be impossible to identify. Here we use an α/ß-peptide helix to show that an aligned pair of primary amine groups is uniquely competent to catalyze crossed aldol condensations with an aryl aldehyde as the electrophile. Geometrically similar diads in which one amine group is secondary, or both are secondary, are good catalysts for other types of aldol condensations but not those involving an aryl aldehyde. Catalytic efficacy requires ß-amino acid residues that are preorganized for helix formation via cyclic constraint. Conventional peptides (exclusively α-amino acid residues) that display the primary amine diad are poor catalysts, which highlights the critical role of the foldamer scaffold.


Assuntos
Peptídeos/química , Aldeídos/química , Sequência de Aminoácidos , Catálise
4.
Science ; 366(6472): 1528-1531, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31857487

RESUMO

Macrocycles, compounds containing a ring of 12 or more atoms, find use in human medicine, fragrances, and biological ion sensing. The efficient preparation of macrocycles is a fundamental challenge in synthetic organic chemistry because the high entropic cost of large-ring closure allows undesired intermolecular reactions to compete. Here, we present a bioinspired strategy for macrocycle formation through carbon-carbon bond formation. The process relies on a catalytic oligomer containing α- and ß-amino acid residues to template the ring-closing process. The α/ß-peptide foldamer adopts a helical conformation that displays a catalytic primary amine-secondary amine diad in a specific three-dimensional arrangement. This catalyst promotes aldol reactions that form rings containing 14 to 22 atoms. Utility is demonstrated in the synthesis of the natural product robustol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA