Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Hum Mol Genet ; 25(12): 2539-2551, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27260406

RESUMO

OPA1 mutations are responsible for autosomal dominant optic atrophy (ADOA), a progressive blinding disease characterized by retinal ganglion cell (RGC) degeneration and large phenotypic variations, the underlying mechanisms of which are poorly understood. OPA1 encodes a mitochondrial protein with essential biological functions, its main roles residing in the control of mitochondrial membrane dynamics as a pro-fusion protein and prevention of apoptosis. Considering recent findings showing the importance of the mitochondrial fusion process and the involvement of OPA1 in controlling steroidogenesis, we tested the hypothesis of deregulated steroid production in retina due to a disease-causing OPA1 mutation and its contribution to the visual phenotypic variations. Using the mouse model carrying the human recurrent OPA1 mutation, we disclosed that Opa1 haploinsufficiency leads to very high circulating levels of steroid precursor pregnenolone in females, causing an early-onset vision loss, abolished by ovariectomy. In addition, steroid production in retina is also increased which, in conjunction with high circulating levels, impairs estrogen receptor expression and mitochondrial respiratory complex IV activity, promoting RGC apoptosis in females. We further demonstrate the involvement of Muller glial cells as increased pregnenolone production in female cells is noxious and compromises their role in supporting RGC survival. In parallel, we analyzed ophthalmological data of a multicentre OPA1 patient cohort and found that women undergo more severe visual loss at adolescence and greater progressive thinning of the retinal nerve fibres than males. Thus, we disclosed a gender-dependent effect on ADOA severity, involving for the first time steroids and Müller glial cells, responsible for RGC degeneration.


Assuntos
GTP Fosfo-Hidrolases/genética , Atrofia Óptica Autossômica Dominante/genética , Degeneração Retiniana/genética , Células Ganglionares da Retina/patologia , Adolescente , Animais , Apoptose/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mutantes/genética , Nervo Óptico/patologia , Pregnenolona/genética , Pregnenolona/metabolismo , Retina/patologia , Degeneração Retiniana/patologia , Caracteres Sexuais
2.
Am J Hum Genet ; 97(5): 754-60, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26593267

RESUMO

Autosomal-recessive optic neuropathies are rare blinding conditions related to retinal ganglion cell (RGC) and optic-nerve degeneration, for which only mutations in TMEM126A and ACO2 are known. In four families with early-onset recessive optic neuropathy, we identified mutations in RTN4IP1, which encodes a mitochondrial ubiquinol oxydo-reductase. RTN4IP1 is a partner of RTN4 (also known as NOGO), and its ortholog Rad8 in C. elegans is involved in UV light response. Analysis of fibroblasts from affected individuals with a RTN4IP1 mutation showed loss of the altered protein, a deficit of mitochondrial respiratory complex I and IV activities, and increased susceptibility to UV light. Silencing of RTN4IP1 altered the number and morphogenesis of mouse RGC dendrites in vitro and the eye size, neuro-retinal development, and swimming behavior in zebrafish in vivo. Altogether, these data point to a pathophysiological mechanism responsible for RGC early degeneration and optic neuropathy and linking RTN4IP1 functions to mitochondrial physiology, response to UV light, and dendrite growth during eye maturation.


Assuntos
Proteínas de Transporte/genética , Fibroblastos/patologia , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Mutação/genética , Doenças do Nervo Óptico/genética , Doenças do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Complexo I de Transporte de Elétrons , Feminino , Fibroblastos/metabolismo , Seguimentos , Genes Recessivos , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Degeneração Neural , Linhagem , Prognóstico , Células Ganglionares da Retina/metabolismo , Homologia de Sequência de Aminoácidos , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
3.
Brain ; 140(10): 2586-2596, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969390

RESUMO

Dominant optic atrophy is a blinding disease due to the degeneration of the retinal ganglion cells, the axons of which form the optic nerves. In most cases, the disease is caused by mutations in OPA1, a gene encoding a mitochondrial large GTPase involved in cristae structure and mitochondrial network fusion. Using exome sequencing, we identified dominant mutations in DNM1L on chromosome 12p11.21 in three large families with isolated optic atrophy, including the two families that defined the OPA5 locus on chromosome 19q12.1-13.1, the existence of which is denied by the present study. Analyses of patient fibroblasts revealed physiological abundance and homo-polymerization of DNM1L, forming aggregates in the cytoplasm and on highly tubulated mitochondrial network, whereas neither structural difference of the peroxisome network, nor alteration of the respiratory machinery was noticed. Fluorescence microscopy of wild-type mouse retina disclosed a strong DNM1L expression in the ganglion cell layer and axons, and comparison between 3-month-old wild-type and Dnm1l+/- mice revealed increased mitochondrial length in retinal ganglion cell soma and axon, but no degeneration. Thus, our results disclose that in addition to OPA1, OPA3, MFN2, AFG3L2 and SPG7, dominant mutations in DNM1L jeopardize the integrity of the optic nerve, suggesting that alterations of the opposing forces governing mitochondrial fusion and fission, similarly affect retinal ganglion cell survival.


Assuntos
GTP Fosfo-Hidrolases/genética , Proteínas Associadas aos Microtúbulos/genética , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Mutação/genética , Atrofia Óptica/genética , Adolescente , Adulto , Animais , Células Cultivadas , Criança , Dinaminas , Saúde da Família , Feminino , Fibroblastos/patologia , Fibroblastos/ultraestrutura , Humanos , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Consumo de Oxigênio/genética , Peroxissomos/patologia , Retina/patologia , Retina/ultraestrutura
4.
Hum Mol Genet ; 24(14): 3948-55, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25901006

RESUMO

Mitochondrial complex I (CI) deficiencies are causing debilitating neurological diseases, among which, the Leber Hereditary Optic Neuropathy and Leigh Syndrome are the most frequent. Here, we describe the first germinal pathogenic mutation in the NDUFA13/GRIM19 gene encoding a CI subunit, in two sisters with early onset hypotonia, dyskinesia and sensorial deficiencies, including a severe optic neuropathy. Biochemical analysis revealed a drastic decrease in CI enzymatic activity in patient muscle biopsies, and reduction of CI-driven respiration in fibroblasts, while the activities of complex II, III and IV were hardly affected. Western blots disclosed that the abundances of NDUFA13 protein, CI holoenzyme and super complexes were drastically reduced in mitochondrial fractions, a situation that was reproduced by silencing NDUFA13 in control cells. Thus, we established here a correlation between the first mutation yet identified in the NDUFA13 gene, which induces CI instability and a severe but slowly evolving clinical presentation affecting the central nervous system.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Discinesias/genética , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/genética , Hipotonia Muscular/genética , NADH NADPH Oxirredutases/genética , Proteínas Reguladoras de Apoptose/metabolismo , Criança , Pré-Escolar , Complexo I de Transporte de Elétrons/genética , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Mutação , NADH NADPH Oxirredutases/metabolismo , Fases de Leitura Aberta , Linhagem
5.
J Cell Mol Med ; 20(9): 1651-63, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27072643

RESUMO

Among retinal macular diseases, the juvenile recessive Stargardt disease and the age-related degenerative disease arise from carbonyl and oxidative stresses (COS). Both stresses originate from an accumulation of all-trans-retinal (atRAL) and are involved in bisretinoid formation by condensation of atRAL with phosphatidylethanolamine (carbonyl stress) in the photoreceptor and its transformation into lipofuscin bisretinoids (oxidative stress) in the retinal pigment epithelium (RPE). As atRAL and bisretinoid accumulation contribute to RPE and photoreceptor cell death, our goal is to select powerful chemical inhibitors of COS. Here, we describe that phloroglucinol, a natural phenolic compound having anti-COS properties, protects both rat RPE and mouse photoreceptor primary cultures from atRAL-induced cell death and reduces hydrogen peroxide (H2 O2 )-induced damage in RPE in a dose-dependent manner. Mechanistic analyses demonstrate that the protective effect encompasses decrease in atRAL-induced intracellular reactive oxygen species and free atRAL levels. Moreover, we show that phloroglucinol reacts with atRAL to form a chromene adduct which prevents bisretinoid A2E synthesis in vitro. Taken together, these data show that the protective effect of phloroglucinol correlates with its ability to trap atRAL and to prevent its further transformation into deleterious bisretinoids. Phloroglucinol might be a good basis to develop efficient therapeutic derivatives in the treatment of retinal macular diseases.


Assuntos
Citoproteção/efeitos dos fármacos , Floroglucinol/farmacologia , Células Fotorreceptoras de Vertebrados/metabolismo , Substâncias Protetoras/farmacologia , Epitélio Pigmentado da Retina/patologia , Retinaldeído/toxicidade , Retinoides/metabolismo , Animais , Benzopiranos/metabolismo , Morte Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo , Espectroscopia de Prótons por Ressonância Magnética , Ratos Long-Evans , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo
8.
Brain ; 135(Pt 12): 3599-613, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23250881

RESUMO

Dominant optic atrophy is a rare inherited optic nerve degeneration caused by mutations in the mitochondrial fusion gene OPA1. Recently, the clinical spectrum of dominant optic atrophy has been extended to frequent syndromic forms, exhibiting various degrees of neurological and muscle impairments frequently found in mitochondrial diseases. Although characterized by a specific loss of retinal ganglion cells, the pathophysiology of dominant optic atrophy is still poorly understood. We generated an Opa1 mouse model carrying the recurrent Opa1(delTTAG) mutation, which is found in 30% of all patients with dominant optic atrophy. We show that this mouse displays a multi-systemic poly-degenerative phenotype, with a presentation associating signs of visual failure, deafness, encephalomyopathy, peripheral neuropathy, ataxia and cardiomyopathy. Moreover, we found premature age-related axonal and myelin degenerations, increased autophagy and mitophagy and mitochondrial supercomplex instability preceding degeneration and cell death. Thus, these results support the concept that Opa1 protects against neuronal degeneration and opens new perspectives for the exploration and the treatment of mitochondrial diseases.


Assuntos
GTP Fosfo-Hidrolases/genética , Regulação da Expressão Gênica/genética , Doenças Mitocondriais/genética , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/fisiopatologia , Deleção de Sequência/genética , Estimulação Acústica , Fatores Etários , Senilidade Prematura/genética , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Distribuição de Qui-Quadrado , Creatina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletrorretinografia , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Potenciais Evocados Visuais/genética , Glicólise/genética , Humanos , Ácido Láctico/metabolismo , Locomoção/genética , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Mitocondriais/complicações , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Sistema Nervoso/patologia , Sistema Nervoso/ultraestrutura , Atrofia Óptica Autossômica Dominante/patologia , Atrofia Óptica Autossômica Dominante/reabilitação , Nervo Óptico/patologia , Nervo Óptico/fisiopatologia , Nervo Óptico/ultraestrutura , Fenótipo , Condicionamento Físico Animal , Psicoacústica , Desempenho Psicomotor/fisiologia , Tempo de Reação/genética , Retina/patologia , Retina/fisiopatologia , Retina/ultraestrutura , Células Ganglionares da Retina/patologia
9.
FASEB J ; 25(5): 1618-27, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21285398

RESUMO

Charcot-Marie-Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochondrial outer membrane protein that promotes mitochondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To examine whether mitochondrial dysfunction is a feature of CMT2A, we used a transgenic mouse model expressing in neurons a mutated R94Q form of human MFN2 shown to induce a CMT2A phenotype. Oxygraphic and enzymatic measurements both revealed a combined defect of mitochondrial complexes II and V (40 and 30% decrease, respectively) in the brain of Tg-R94 mice, leading to a drastic decrease of ATP synthesis. These deficiencies were reversed by the mitochondrial ATP-sensitive potassium channel (mK(ATP)) inhibitor 5-hydroxydecanoate. Conversely, in controls and wild-type human MFN2 mice, the mK(ATP) activator diazoxide mimicked the deficiency observed with the R94Q mutation. The physical links between complexes II and V, previously proposed as part of mK(ATP), were reinforced in Tg-R94Q mice. Our results show that the R94Q MFN2 mutation induces a combined defect of complexes II and V linked to the opening of mK(ATP), which could participate in the pathophysiology of the disease.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Canais KATP/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Diazóxido/farmacologia , GTP Fosfo-Hidrolases/genética , Humanos , Imunoprecipitação , Canais KATP/agonistas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
10.
Redox Biol ; 56: 102431, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988446

RESUMO

YAP1 and TAZ are transcriptional co-activator proteins that play fundamental roles in many biological processes, from cell proliferation and cell lineage fate determination to tumorigenesis. We previously demonstrated that Limb Expression 1 (LIX1) regulates YAP1 and TAZ activity and controls digestive mesenchymal progenitor proliferation. However, LIX1 mode of action remains elusive. Here, we found that endogenous LIX1 is localized in mitochondria and is anchored to the outer mitochondrial membrane through S-palmitoylation of cysteine 84, a residue conserved in all LIX1 orthologs. LIX1 downregulation altered the mitochondrial ultrastructure, resulting in a significantly decreased respiration and attenuated production of mitochondrial reactive oxygen species (mtROS). Mechanistically, LIX1 knock-down impaired the stability of the mitochondrial proteins PHB2 and OPA1 that are found in complexes with mitochondrial-specific phospholipids and are required for cristae organization. Supplementation with unsaturated fatty acids counteracted the effects of LIX1 knock-down on mitochondrial morphology and ultrastructure and restored YAP1/TAZ signaling. Collectively, our data demonstrate that LIX1 is a key regulator of cristae organization, modulating mtROS level and subsequently regulating the signaling cascades that control fate commitment of digestive mesenchyme-derived cells.


Assuntos
Cisteína , Mitocôndrias , Cisteína/metabolismo , Mesoderma/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA