RESUMO
Yersiniosis is the third most commonly reported foodborne zoonosis in the European Union. Here, we evaluated the prevalence of pathogenic Yersinia enterocolitica among healthy pigs (as a major reservoir) in a slaughterhouse in Bulgaria. A total of 790 tonsils and feces from 601 pigs were examined. Isolation and pathogenicity characterization was carried out by the ISO 10273:2003 protocol and Polymerase Chain Reaction (PCR), detecting the 16S rRNA gene, attachment and invasion locus (ail), Yersinia heat-stable enterotoxin (ystA), and Yersinia adhesion (yadA) genes. Genetic diversity was assessed by pulsed-field gel electrophoresis (PFGE), and antimicrobial resistance by the standard disk diffusion method. Of all the pigs tested, 6.7% were positive for Y. enterocolitica. All isolates belonged to Y. enterocolitica bioserotype 4/O:3. ail, and ystA genes were detected in all positive strains (n = 43), while the plasmid Yersinia virulence plasmid (pYV) was detected in 41. High homogeneity was observed among the strains, with all strains susceptible to ceftriaxone, amikacin and ciprofloxacin, and resistant to ampicillin. In conclusion, a low prevalence of Y. enterocolitica 4/O:3 was found in healthy pigs slaughtered in Bulgaria, not underestimating possible contamination of pork as a potential risk to consumer health.
RESUMO
Antimicrobial resistance (AMR) is a worldwide health problem affecting humans, animals, and the environment within the framework of the "One Health" concept. The aim of our study was to evaluate the prevalence of pathogenic strains of the species Escherichia coli (E. coli), their AMR profile, and biofilm-forming potential. The isolated strains from three swine faeces and free lagoons (ISO 16654:2001/Amd 1:2017) were confirmed using Phoenix M50 and 16S rDNA PCR. The antibiotic sensitivity to 34 clinically applied antibiotics was determined by Phoenix M50 and the disc diffusion method, according to the protocols of the CLSI and EUCAST. We confirmed the presence of 16 E. coli isolates, of which 87.5% were multi-drug-resistant and 31.25% performed strong biofilms. The possibility for the carrying and transmission of antibiotic-resistance genes to quinolones (qnr), aminoglycosides (aac(3)), ß-lactamase-producing plasmid genes ampC, and blaSHV/blaTEM was investigated. We confirmed the carrying of blaSHV/blaTEM in one and ampC in seven isolates. The strains were negative for the virulence genes (ETEC (LT, STa, and F4), EPEC (eae), and STEC/VTEC (stx and stx2all)). The results should contribute to the development of effective measures for limitation and control on the use of antibiotics, which is a key point in the WHO action plan.