Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 466(7304): 334-8, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20631792

RESUMO

Viral diversity and life cycles are poorly understood in the human gut and other body habitats. Phages and their encoded functions may provide informative signatures of a human microbiota and of microbial community responses to various disturbances, and may indicate whether community health or dysfunction is manifest after apparent recovery from a disease or therapeutic intervention. Here we report sequencing of the viromes (metagenomes) of virus-like particles isolated from faecal samples collected from healthy adult female monozygotic twins and their mothers at three time points over a one-year period. We compared these data sets with data sets of sequenced bacterial 16S ribosomal RNA genes and total-faecal-community DNA. Co-twins and their mothers share a significantly greater degree of similarity in their faecal bacterial communities than do unrelated individuals. In contrast, viromes are unique to individuals regardless of their degree of genetic relatedness. Despite remarkable interpersonal variations in viromes and their encoded functions, intrapersonal diversity is very low, with >95% of virotypes retained over the period surveyed, and with viromes dominated by a few temperate phages that exhibit remarkable genetic stability. These results indicate that a predatory viral-microbial dynamic, manifest in a number of other characterized environmental ecosystems, is notably absent in the very distal intestine.


Assuntos
Fezes/microbiologia , Fezes/virologia , Metagenoma , Mães , Gêmeos Monozigóticos , Vírus/genética , Vírus/isolamento & purificação , Anaerobiose , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bacteriófagos/classificação , Bacteriófagos/enzimologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , DNA Viral/análise , DNA Viral/genética , Feminino , Genes Bacterianos/genética , Genoma Bacteriano/genética , Genoma Viral/genética , Hereditariedade/genética , Humanos , Intestinos/microbiologia , Intestinos/virologia , Metagenoma/genética , Prófagos/classificação , Prófagos/genética , Prófagos/isolamento & purificação , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fatores de Tempo , Gêmeos Monozigóticos/genética , Proteínas Virais/análise , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírus/classificação
2.
Proc Natl Acad Sci U S A ; 110(38): 15342-7, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003127

RESUMO

Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century.


Assuntos
Poluição do Ar/efeitos adversos , Antozoários/crescimento & desenvolvimento , Calcificação Fisiológica/fisiologia , Cálcio/metabolismo , Dióxido de Carbono/análise , Recifes de Corais , Água do Mar/química , Análise de Variância , Animais , Antozoários/metabolismo , Conservação dos Recursos Naturais , Primers do DNA/genética , Sedimentos Geológicos/microbiologia , Metagenoma/genética , Oceano Pacífico , Reação em Cadeia da Polimerase , Queensland , Estações do Ano , Temperatura
3.
Bioinformatics ; 30(13): 1926-7, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24618462

RESUMO

The development of bioinformatic solutions for microbial ecology in Perl is limited by the lack of modules to represent and manipulate microbial community profiles from amplicon and meta-omics studies. Here we introduce Bio-Community, an open-source, collaborative toolkit that extends BioPerl. Bio-Community interfaces with commonly used programs using various file formats, including BIOM, and provides operations such as rarefaction and taxonomic summaries. Bio-Community will help bioinformaticians to quickly piece together custom analysis pipelines and develop novel software. Availability an implementation: Bio-Community is cross-platform Perl code available from http://search.cpan.org/dist/Bio-Community under the Perl license. A readme file describes software installation and how to contribute.


Assuntos
Ecossistema , Biologia Computacional/métodos , Humanos , Técnicas Microbiológicas , Microbiologia , Design de Software
4.
BMC Genomics ; 15: 989, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25407630

RESUMO

BACKGROUND: Viruses have unique properties, small genome and regions of high similarity, whose effects on metagenomic assemblies have not been characterized so far. This study uses diverse in silico simulated viromes to evaluate how extensively genomes can be assembled using different sequencing platforms and assemblers. Further, it investigates the suitability of different methods to estimate viral diversity in metagenomes. RESULTS: We created in silico metagenomes mimicking various platforms at different sequencing depths. The CLC assembler revealed subpar compared to IDBA_UD and CAMERA , which are metagenomic-specific. Up to a saturation point, Illumina platforms proved more capable of reconstructing large portions of viral genomes compared to 454. Read length was an important factor for limiting chimericity, while scaffolding marginally improved contig length and accuracy. The genome length of the various viruses in the metagenomes did not significantly affect genome reconstruction, but the co-existence of highly similar genomes was detrimental. When evaluating diversity estimation tools, we found that PHACCS results were more accurate than those from CatchAll and clustering, which were both orders of magnitude above expected. CONCLUSIONS: Assemblers designed specifically for the analysis of metagenomes should be used to facilitate the creation of high-quality long contigs. Despite the high coverage possible, scientists should not expect to always obtain complete genomes, because their reconstruction may be hindered by co-existing species bearing highly similar genomic regions. Further development of metagenomics-oriented assemblers may help bypass these limitations in future studies. Meanwhile, the lack of fully reconstructed communities keeps methods to estimate viral diversity relevant. While none of the three methods tested had absolute precision, only PHACCS was deemed suitable for comparative studies.


Assuntos
Variação Genética , Genoma Viral , Metagenoma/genética , Metagenômica/métodos , Mapeamento de Sequências Contíguas
5.
Nature ; 452(7187): 629-32, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18337718

RESUMO

Microbial activities shape the biogeochemistry of the planet and macroorganism health. Determining the metabolic processes performed by microbes is important both for understanding and for manipulating ecosystems (for example, disruption of key processes that lead to disease, conservation of environmental services, and so on). Describing microbial function is hampered by the inability to culture most microbes and by high levels of genomic plasticity. Metagenomic approaches analyse microbial communities to determine the metabolic processes that are important for growth and survival in any given environment. Here we conduct a metagenomic comparison of almost 15 million sequences from 45 distinct microbiomes and, for the first time, 42 distinct viromes and show that there are strongly discriminatory metabolic profiles across environments. Most of the functional diversity was maintained in all of the communities, but the relative occurrence of metabolisms varied, and the differences between metagenomes predicted the biogeochemical conditions of each environment. The magnitude of the microbial metabolic capabilities encoded by the viromes was extensive, suggesting that they serve as a repository for storing and sharing genes among their microbial hosts and influence global evolutionary and metabolic processes.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Ecossistema , Perfilação da Expressão Gênica , Genômica , Vírus/genética , Vírus/metabolismo , Animais , Antozoários/fisiologia , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/isolamento & purificação , Quimiotaxia/genética , Biologia Computacional , Culicidae/fisiologia , Peixes/fisiologia , Água Doce , Genoma Arqueal , Genoma Bacteriano , Genoma Viral , Microbiologia , Água do Mar , Vírus/isolamento & purificação
6.
Nature ; 452(7185): 340-3, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18311127

RESUMO

Viruses, and more particularly phages (viruses that infect bacteria), represent one of the most abundant living entities in aquatic and terrestrial environments. The biogeography of phages has only recently been investigated and so far reveals a cosmopolitan distribution of phage genetic material (or genotypes). Here we address this cosmopolitan distribution through the analysis of phage communities in modern microbialites, the living representatives of one of the most ancient life forms on Earth. On the basis of a comparative metagenomic analysis of viral communities associated with marine (Highborne Cay, Bahamas) and freshwater (Pozas Azules II and Rio Mesquites, Mexico) microbialites, we show that some phage genotypes are geographically restricted. The high percentage of unknown sequences recovered from the three metagenomes (>97%), the low percentage similarities with sequences from other environmental viral (n = 42) and microbial (n = 36) metagenomes, and the absence of viral genotypes shared among microbialites indicate that viruses are genetically unique in these environments. Identifiable sequences in the Highborne Cay metagenome were dominated by single-stranded DNA microphages that were not detected in any other samples examined, including sea water, fresh water, sediment, terrestrial, extreme, metazoan-associated and marine microbial mats. Finally, a marine signature was present in the phage community of the Pozas Azules II microbialites, even though this environment has not been in contact with the ocean for tens of millions of years. Taken together, these results prove that viruses in modern microbialites display biogeographical variability and suggest that they may be derived from an ancient community.


Assuntos
Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Biodiversidade , Ecossistema , Geografia , Microbiologia da Água , Bacteriófagos/classificação , Bacteriófagos/genética , Bahamas , Capsídeo/química , Biologia Computacional , DNA Viral/análise , DNA Viral/genética , Água Doce/microbiologia , Água Doce/virologia , Genoma Viral/genética , Genômica , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/virologia , México , Dados de Sequência Molecular , Filogenia , Proteoma/metabolismo , Água do Mar/microbiologia , Água do Mar/virologia
7.
Nucleic Acids Res ; 40(12): e94, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22434876

RESUMO

We introduce Grinder (http://sourceforge.net/projects/biogrinder/), an open-source bioinformatic tool to simulate amplicon and shotgun (genomic, metagenomic, transcriptomic and metatranscriptomic) datasets from reference sequences. This is the first tool to simulate amplicon datasets (e.g. 16S rRNA) widely used by microbial ecologists. Grinder can create sequence libraries with a specific community structure, α and ß diversities and experimental biases (e.g. chimeras, gene copy number variation) for commonly used sequencing platforms. This versatility allows the creation of simple to complex read datasets necessary for hypothesis testing when developing bioinformatic software, benchmarking existing tools or designing sequence-based experiments. Grinder is particularly useful for simulating clinical or environmental microbial communities and complements the use of in vitro mock communities.


Assuntos
Biblioteca Gênica , Análise de Sequência de DNA , Software , Simulação por Computador , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
8.
Proc Natl Acad Sci U S A ; 108 Suppl 1: 4547-53, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20547834

RESUMO

The human oropharynx is a reservoir for many potential pathogens, including streptococcal species that cause endocarditis. Although oropharyngeal microbes have been well described, viral communities are essentially uncharacterized. We conducted a metagenomic study to determine the composition of oropharyngeal DNA viral communities (both phage and eukaryotic viruses) in healthy individuals and to evaluate oropharyngeal swabs as a rapid method for viral detection. Viral DNA was extracted from 19 pooled oropharyngeal swabs and sequenced. Viral communities consisted almost exclusively of phage, and complete genomes of several phage were recovered, including Escherichia coli phage T3, Propionibacterium acnes phage PA6, and Streptococcus mitis phage SM1. Phage relative abundances changed dramatically depending on whether samples were chloroform treated or filtered to remove microbial contamination. pblA and pblB genes of phage SM1 were detected in the metagenomes. pblA and pblB mediate the attachment of S. mitis to platelets and play a significant role in S. mitis virulence in the endocardium, but have never previously been detected in the oral cavity. These genes were also identified in salivary metagenomes from three individuals at three time points and in individual saliva samples by PCR. Additionally, we demonstrate that phage SM1 can be induced by commonly ingested substances. Our results indicate that the oral cavity is a reservoir for pblA and pblB genes and for phage SM1 itself. Further studies will determine the association between pblA and pblB genes in the oral cavity and the risk of endocarditis.


Assuntos
Bacteriófagos/genética , Plaquetas/metabolismo , Endocardite/virologia , Escherichia coli/virologia , Boca/microbiologia , Filogenia , Propionibacterium acnes/virologia , Streptococcus mitis/virologia , Bacteriófagos/isolamento & purificação , Sequência de Bases , California , Biologia Computacional , Citometria de Fluxo , Genes Virais/genética , Humanos , Metagenômica , Dados de Sequência Molecular , Boca/virologia , Análise de Sequência de DNA
9.
Environ Microbiol ; 14(2): 441-52, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22040222

RESUMO

Viruses have been detected in the different stages of wastewater treatment plants (WWTPs) at concentrations of 10(8) -10(10) ml(-1) of virus-like particles (VLPs), 10-1000 times higher than in natural aquatic environments, suggesting that WWTPs can be considered as an important reservoir and source of viruses. This study revealed novel diversity and function with the DNA viral communities in the influent, activated sludge, anaerobic digester, and effluent of a domestic WWTP using metagenomics. WWTP was a very specific environment, with less than 5% of the > 936 000 metagenomic sequences obtained (∼70-119 Mbp per sample) similar to sequences present in other environmental viromes. Many viruses found in the WWTP were novel, resulting in only < 5-20% of the reads being phylogenetically or functionally assigned. DNA metabolism was observed as the most abundant function with DNA methylase detected at levels 4.2-fold higher than other published viromes, while carbohydrate and amino acids metabolisms were 3.7- and 4.2-fold less abundant respectively. These specific aspects of the WWTP community functions are likely due to high biomass concentration, turnover rate and microbial activity in WWTPs, and likely include mechanisms that help viruses increase their infectivity. Among ∼500 genotypes estimated in individual WWTP viromes, > 82% were shared. These data suggested that VLPs of most viral types could be present between 1 and 30 days in the process before they were discharged. Viruses in WWTP and the discharged ones can have potential impacts on the functioning of the wastewater treatment system and on the dynamics of microbial community in the surrounding aquatic environments respectively.


Assuntos
Vírus de DNA/classificação , Metagenoma , Esgotos/virologia , Eliminação de Resíduos Líquidos , Microbiologia da Água , Biomassa , Vírus de DNA/genética , Metagenômica , Clima Tropical
10.
Environ Microbiol ; 14(1): 207-27, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22004549

RESUMO

Viruses are the most abundant biological entities on the planet and play an important role in balancing microbes within an ecosystem and facilitating horizontal gene transfer. Although bacteriophages are abundant in rumen environments, little is known about the types of viruses present or their interaction with the rumen microbiome. We undertook random pyrosequencing of virus-enriched metagenomes (viromes) isolated from bovine rumen fluid and analysed the resulting data using comparative metagenomics. A high level of diversity was observed with up to 28,000 different viral genotypes obtained from each environment. The majority (~78%) of sequences did not match any previously described virus. Prophages outnumbered lytic phages approximately 2:1 with the most abundant bacteriophage and prophage types being associated with members of the dominant rumen phyla (Firmicutes and Proteobacteria). Metabolic profiling based on SEED subsystems revealed an enrichment of sequences with putative functional roles in DNA and protein metabolism, but a surprisingly low proportion of sequences assigned to carbohydrate and amino acid metabolism. We expanded our analysis to include previously described metagenomic data and 14 reference genomes. Clustered regularly interspaced short palindromic repeats (CRISPR) were detected in most of the microbial genomes, suggesting previous interactions between viral and microbial communities.


Assuntos
Bactérias/virologia , Bacteriófagos/genética , Metagenoma , Rúmen/microbiologia , Rúmen/virologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/metabolismo , Biodiversidade , Bovinos , Biologia Computacional , DNA Bacteriano/genética , DNA Viral/genética , Genótipo , Sequências Repetitivas Dispersas , Sequências Repetidas Invertidas , Metaboloma , Análise de Sequência de DNA
11.
Environ Microbiol ; 14(11): 3043-65, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23039259

RESUMO

Oxygen minimum zones (OMZs) are oceanographic features that affect ocean productivity and biodiversity, and contribute to ocean nitrogen loss and greenhouse gas emissions. Here we describe the viral communities associated with the Eastern Tropical South Pacific (ETSP) OMZ off Iquique, Chile for the first time through abundance estimates and viral metagenomic analysis. The viral-to-microbial ratio (VMR) in the ETSP OMZ fluctuated in the oxycline and declined in the anoxic core to below one on several occasions. The number of viral genotypes (unique genomes as defined by sequence assembly) ranged from 2040 at the surface to 98 in the oxycline, which is the lowest viral diversity recorded to date in the ocean. Within the ETSP OMZ viromes, only 4.95% of genotypes were shared between surface and anoxic core viromes using reciprocal BLASTn sequence comparison. ETSP virome comparison with surface marine viromes (Sargasso Sea, Gulf of Mexico, Kingman Reef, Chesapeake Bay) revealed a dissimilarity of ETSP OMZ viruses to those from other oceanic regions. From the 1.4 million non-redundant DNA sequences sampled within the altered oxygen conditions of the ETSP OMZ, more than 97.8% were novel. Of the average 3.2% of sequences that showed similarity to the SEED non-redundant database, phage sequences dominated the surface viromes, eukaryotic virus sequences dominated the oxycline viromes, and phage sequences dominated the anoxic core viromes. The viral community of the ETSP OMZ was characterized by fluctuations in abundance, taxa and diversity across the oxygen gradient. The ecological significance of these changes was difficult to predict; however, it appears that the reduction in oxygen coincides with an increased shedding of eukaryotic viruses in the oxycline, and a shift to unique viral genotypes in the anoxic core.


Assuntos
Biodiversidade , Oxigênio/metabolismo , Água do Mar/virologia , Fenômenos Fisiológicos Virais , Anaerobiose , Bactérias/classificação , Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Chile , Genótipo , Nitrogênio/metabolismo , Oceanos e Mares , Oxirredução , Filogenia , Enxofre/metabolismo , Vírus/genética
12.
Proc Natl Acad Sci U S A ; 105(47): 18413-8, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19017800

RESUMO

During the last several decades corals have been in decline and at least one-third of all coral species are now threatened with extinction. Coral disease has been a major contributor to this threat, but little is known about the responsible pathogens. To date most research has focused on bacterial and fungal diseases; however, viruses may also be important for coral health. Using a combination of empirical viral metagenomics and real-time PCR, we show that Porites compressa corals contain a suite of eukaryotic viruses, many related to the Herpesviridae. This coral-associated viral consortium was found to shift in response to abiotic stressors. In particular, when exposed to reduced pH, elevated nutrients, and thermal stress, the abundance of herpes-like viral sequences rapidly increased in 2 separate experiments. Herpes-like viral sequences were rarely detected in apparently healthy corals, but were abundant in a majority of stressed samples. In addition, surveys of the Nematostella and Hydra genomic projects demonstrate that even distantly related Cnidarians contain numerous herpes-like viral genes, likely as a result of latent or endogenous viral infection. These data support the hypotheses that corals experience viral infections, which are exacerbated by stress, and that herpes-like viruses are common in Cnidarians.


Assuntos
Antozoários/virologia , Genômica , Herpesviridae/fisiologia , Replicação Viral , Animais , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
13.
PLoS Comput Biol ; 5(12): e1000593, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20011103

RESUMO

Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.


Assuntos
Genoma Bacteriano , Genoma Viral , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Design de Software , Bases de Dados de Ácidos Nucleicos
14.
Environ Microbiol ; 11(11): 2863-73, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19659499

RESUMO

Roseophage SIO1 is a lytic marine phage that infects Roseobacter SIO67, a member of the Roseobacter clade of near-shore alphaproteobacteria. Roseophage SIO1 was first isolated in 1989 and sequenced in 2000. We have re-sequenced and re-annotated the original isolate. Our current annotation could only assign functions to seven additional open reading frames, indicating that, despite the advances in bioinformatics tools and increased genomic resources, we are still far from being able to translate phage genomic sequences into biological functions. In 2001, we isolated four new strains of Roseophage SIO1 from California near-shore locations. The genomes of all four were sequenced and compared against the original Roseophage SIO1 isolated in 1989. A high degree of conservation was evident across all five genomes; comparisons at the nucleotide level yielded an average 97% identity. The observed differences were clustered in protein-encoding regions and were mostly synonymous. The one strain that was found to possess an expanded host range also showed notable changes in putative tail protein-coding regions. Despite the possibly rapid evolution of phage and the mostly uncharacterized diversity found in viral metagenomic data sets, these findings indicate that viral genomes such as the genome of SIO1-like Roseophages can be stably maintained over ecologically significant time and distance (i.e. over a decade and approximately 50 km).


Assuntos
Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Roseobacter/virologia , California , Sequência Conservada , Ordem dos Genes , Filogenia , Água do Mar/microbiologia , Água do Mar/virologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
15.
Environ Microbiol ; 11(8): 2148-63, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19397678

RESUMO

The coral holobiont is the community of metazoans, protists and microbes associated with scleractinian corals. Disruptions in these associations have been correlated with coral disease, but little is known about the series of events involved in the shift from mutualism to pathogenesis. To evaluate structural and functional changes in coral microbial communities, Porites compressa was exposed to four stressors: increased temperature, elevated nutrients, dissolved organic carbon loading and reduced pH. Microbial metagenomic samples were collected and pyrosequenced. Functional gene analysis demonstrated that stressors increased the abundance of microbial genes involved in virulence, stress resistance, sulfur and nitrogen metabolism, motility and chemotaxis, fatty acid and lipid utilization, and secondary metabolism. Relative changes in taxonomy also demonstrated that coral-associated microbiota (Archaea, Bacteria, protists) shifted from a healthy-associated coral community (e.g. Cyanobacteria, Proteobacteria and the zooxanthellae Symbiodinium) to a community (e.g. Bacteriodetes, Fusobacteria and Fungi) of microbes often found on diseased corals. Additionally, low-abundance Vibrio spp. were found to significantly alter microbiome metabolism, suggesting that the contribution of a just a few members of a community can profoundly shift the health status of the coral holobiont.


Assuntos
Antozoários , Metagenoma/genética , Estresse Fisiológico/genética , Animais , Antozoários/metabolismo , Antozoários/microbiologia , Dinoflagellida/genética , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Euryarchaeota/genética , Euryarchaeota/metabolismo , Fungos/crescimento & desenvolvimento , Genômica , Metagenoma/efeitos dos fármacos , Nitrogênio/metabolismo , Simbiose , Temperatura , Vibrio/patogenicidade , Virulência/genética
16.
PLoS Biol ; 4(11): e368, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17090214

RESUMO

Viruses are the most common biological entities in the marine environment. There has not been a global survey of these viruses, and consequently, it is not known what types of viruses are in Earth's oceans or how they are distributed. Metagenomic analyses of 184 viral assemblages collected over a decade and representing 68 sites in four major oceanic regions showed that most of the viral sequences were not similar to those in the current databases. There was a distinct "marine-ness" quality to the viral assemblages. Global diversity was very high, presumably several hundred thousand of species, and regional richness varied on a North-South latitudinal gradient. The marine regions had different assemblages of viruses. Cyanophages and a newly discovered clade of single-stranded DNA phages dominated the Sargasso Sea sample, whereas prophage-like sequences were most common in the Arctic. However most viral species were found to be widespread. With a majority of shared species between oceanic regions, most of the differences between viral assemblages seemed to be explained by variation in the occurrence of the most common viral species and not by exclusion of different viral genomes. These results support the idea that viruses are widely dispersed and that local environmental conditions enrich for certain viral types through selective pressure.


Assuntos
Genoma Viral , Água do Mar/virologia , Vírus/genética , Bacteriófagos/isolamento & purificação , Biodiversidade , DNA de Cadeia Simples/isolamento & purificação , Variação Genética , Biologia Marinha , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , Viés de Seleção , Manejo de Espécimes , Vírus/classificação , Vírus/isolamento & purificação
17.
Res Microbiol ; 159(5): 367-73, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18541415

RESUMO

Metagenomic sequencing of DNA viruses from the feces of a healthy week-old infant revealed a viral community with extremely low diversity. The identifiable sequences were dominated by phages, which likely influence the diversity and abundance of co-occurring microbes. The most abundant fecal viral sequences did not originate from breast milk or formula, suggesting a non-dietary initial source of viruses. Certain sequences were stable in the infant's gut over the first 3 months of life, but microarray experiments demonstrated that the overall viral community composition changed dramatically between 1 and 2 weeks of age.


Assuntos
Biodiversidade , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Trato Gastrointestinal/virologia , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , DNA Viral/genética , Fezes/virologia , Humanos , Lactente , Alimentos Infantis/análise , Masculino , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos
18.
FEMS Microbiol Lett ; 273(2): 224-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17559407

RESUMO

Metagenomic analyses suggest that the rank-abundance curve for marine phage communities follows a power law distribution. A new type of power law dependence based on a simple model in which a modified version of Lotka-Volterra predator-prey dynamics is sampled uniformly in time is presented. Biologically, the model embodies a kill the winner hypothesis and a neutral evolution hypothesis. The model can match observed power law distributions and uses very few parameters that are readily identifiable and characterize phage ecosystems. The model makes new untested predictions: (1) it is unlikely that the most abundant phage genotype will be the same at different time points and (2) the long-term decay of isolated phage populations follows a power law.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Modelos Biológicos , Microbiologia da Água , Ecossistema
20.
PeerJ ; 4: e1511, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839738

RESUMO

The role of microorganisms in maintaining coral reef health is increasingly recognized. Riverine floodwater containing herbicides and excess nutrients from fertilizers compromises water quality in the inshore Great Barrier Reef (GBR), with unknown consequences for planktonic marine microbial communities and thus coral reefs. In this baseline study, inshore GBR microbial communities were monitored along a 124 km long transect between 2011 and 2013 using 16S rRNA gene amplicon sequencing. Members of the bacterial orders Rickettsiales (e.g., Pelagibacteraceae) and Synechococcales (e.g., Prochlorococcus), and of the archaeal class Marine Group II were prevalent in all samples, exhibiting a clear seasonal dynamics. Microbial communities near the Tully river mouth included a mixture of taxa from offshore marine sites and from the river system. The environmental parameters collected could be summarized into four groups, represented by salinity, rainfall, temperature and water quality, that drove the composition of microbial communities. During the wet season, lower salinity and a lower water quality index resulting from higher river discharge corresponded to increases in riverine taxa at sites near the river mouth. Particularly large, transient changes in microbial community structure were seen during the extreme wet season 2010-11, and may be partially attributed to the effects of wind and waves, which resuspend sediments and homogenize the water column in shallow near-shore regions. This work shows that anthropogenic floodwaters and other environmental parameters work in conjunction to drive the spatial distribution of microorganisms in the GBR lagoon, as well as their seasonal and daily dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA