Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 223(4): 1873-1887, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31099898

RESUMO

Stomatal responses to environmental signals differ substantially between ferns and angiosperms. However, the mechanisms that lead to such different responses remain unclear. Here we investigated the extent to which leaf metabolism contributes to coordinate the differential stomatal behaviour among ferns and angiosperms. Stomata from all species were responsive to light and CO2 transitions. However, fern stomatal responses were slower and minor in both absolute and relative terms. Angiosperms have higher stomatal density, but this is not correlated with speed of stomatal closure. The metabolic responses throughout the diel course and under different CO2 conditions differ substantially among ferns and angiosperms. Higher sucrose content and an increased sucrose-to-malate ratio during high CO2 -induced stomatal closure was observed in angiosperms compared to ferns. Furthermore, the speed of stomatal closure was positively and negatively correlated with sugars and organic acids, respectively, suggesting that the balance between sugars and organic acids aids in explaining the faster stomatal responses of angiosperms. Our results suggest that mesophyll-derived metabolic signals, especially those associated with sucrose and malate, may also be important to modulate the differential stomatal behaviour between ferns and angiosperms, providing important new information that helps in understanding the metabolism-mediated mechanisms regulating stomatal movements across land plant evolution.


Assuntos
Dióxido de Carbono/metabolismo , Gleiquênias/fisiologia , Luz , Magnoliopsida/fisiologia , Malatos/metabolismo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação , Sacarose/metabolismo , Análise Discriminante , Gleiquênias/efeitos da radiação , Análise dos Mínimos Quadrados , Magnoliopsida/efeitos da radiação , Metaboloma/efeitos da radiação , Fotossíntese/efeitos da radiação , Análise de Componente Principal
2.
Prog Biophys Mol Biol ; 146: 37-49, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30447225

RESUMO

Despite the fact that guard cell abscisic acid (ABA) signalling pathway is well documented, our understanding concerning how and to which extent ABA regulates guard cell metabolism remains fragmentary. Here we have adopted different systems approaches to investigate how ABA modulates guard cell central metabolism by providing genes that are possibly ABA-regulated. By using previous published Arabidopsis guard cell transcript profiling data, we carried out an extensive co-expression network analysis using ABA-related genes and those related to the metabolism and transport of sugars, starch and organic acids. Next, we investigated the presence of ABA responsive elements (ABRE) in the promoter of genes that are highly expressed in guard cells, responsive to ABA and co-expressed with ABA-related genes. Together, these analyses indicated that 44 genes are likely regulated by ABA and 8 of them are highly expressed in guard cells in both the presence and absence of ABA, including genes of the tricarboxylic acid cycle and those related to sucrose and hexose transport and metabolism. It seems likely that ABA may modulate both sucrose transport through guard cell plasma membrane and sucrose metabolism within guard cells. In this context, genes associated with sucrose synthase, sucrose phosphate synthase, trehalose-6-phosphate, invertase, UDP-glucose epimerase/pyrophosphorylase and different sugar transporters contain ABRE in their promoter and are thus possibly ABA regulated. Although validation experiments are required, our study highlights the importance of systems biology approaches to drive new hypothesis and to unravel genes and pathways that are regulated by ABA in guard cells.


Assuntos
Ácido Abscísico/metabolismo , Células Vegetais/metabolismo , Biologia de Sistemas , Transporte Biológico , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Amido/metabolismo , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA