Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(9): 3794-3803, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36800546

RESUMO

Given concerns about potential toxicological hazards of the thousands of data-poor per- and polyfluorinated alkyl substances (PFAS) currently in commerce and detected in the environment, tiered testing strategies that employ high-throughput in vitro screening as an initial testing tier have been implemented. The present study evaluated the effectiveness of previous in vitro screening for identifying PFAS capable, or incapable, of inducing estrogenic responses in fish exposed in vivo. Fathead minnows (Pimephales promelas) were exposed for 96 h to five PFAS (perfluorooctanoic acid [PFOA]; 1H,1H,8H,8H-perfluorooctane-1,8-diol [FC8-diol]; 1H,1H,10H,10H-perfluorodecane-1,10-diol [FC10-diol]; 1H,1H,8H,8H-perfluoro-3,6-dioxaoctane-1,8-diol [FC8-DOD]; and perfluoro-2-methyl-3-oxahexanoic acid [HFPO-DA]) that showed varying levels of in vitro estrogenic potency. In agreement with in vitro screening results, exposure to FC8-diol, FC10-diol, and FC8-DOD caused concentration-dependent increases in the expression of transcript coding for vitellogenin and estrogen receptor alpha and reduced expression of insulin-like growth factor and apolipoprotein eb. Once differences in bioconcentration were accounted for, the rank order of potency in vivo matched that determined in vitro. These results provide a screening level benchmark for worst-case estimates of potential estrogenic hazards of PFAS and a basis for identifying structurally similar PFAS to scrutinize for putative estrogenic activity.


Assuntos
Ácidos Alcanossulfônicos , Cyprinidae , Fluorocarbonos , Animais , Estrogênios/metabolismo , Estrona/metabolismo , Ácidos Alcanossulfônicos/metabolismo
2.
J Fish Biol ; 103(5): 1178-1189, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37492948

RESUMO

There is a pressing need for more-holistic approaches to fisheries assessments along with growing demand to reduce the health impacts of sample collections. Metabolomic tools enable the use of sample matrices that can be collected with minimal impact on the organism (e.g., blood, urine, and mucus) and provide high-throughput, untargeted biochemical information without the requirement of a sequenced genome. These qualities make metabolomics ideal for monitoring a wide range of fish species, particularly those under protected status. In the current study, we surveyed the relative abundances of 120 endogenous metabolites in epidermal mucus across eight freshwater fish species belonging to seven phylogenetic orders. Principal component analysis was used to provide an overview of the data set, revealing strong interspecies relationships in the epidermal mucous metabolome. Normalized relative abundances of individual endogenous metabolites were then used to identify commonalities across multiple species, as well as those metabolites that showed notable species specificity. For example, taurine was measured in high relative abundance in the epidermal mucus of common carp (Cyprinus carpio), northern pike (Esox lucius), golden shiner (Notemigonus crysoleucas), rainbow trout (Oncorhynchus mykiss), and rainbow smelt (Osmerus mordax), whereas γ-amino butyric acid (GABA) exhibited a uniquely high relative abundance in flathead catfish (Pylodictis olivaris). Finally, hierarchical cluster analysis was used to evaluate species relatedness as characterized by both the epidermal mucous metabolome (phenotype) and genetic phylogeny (genotype). This comparison revealed species for which relatedness in the epidermal mucous metabolome composition closely aligns with phylogenetic relatedness (e.g., N. crysoleucas and C. carpio), as well as species for which these two measures are not well aligned (e.g., P. olivaris and Polyodon spathula). These, and other findings reported here, highlight novel areas for future research with fish, including development of epidermal mucous-based markers for non-invasive health monitoring, sex determination, and hypoxia tolerance.


Assuntos
Carpas , Cyprinidae , Ictaluridae , Oncorhynchus mykiss , Osmeriformes , Animais , Filogenia , Metaboloma , Esocidae , Muco , Água Doce , Oncorhynchus mykiss/metabolismo
3.
Environ Sci Technol ; 55(23): 15596-15608, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34748315

RESUMO

Despite over 50 years of research on the use of population models in chemical risk assessment, their practical utility has remained elusive. A novel application and interpretation of ecotoxicological models, Endogenous Lifecycle Models (ELM), is proposed that offers some of the benefits sought from population models, at much lower cost of design, parametrization, and verification. ELMs capture the endogenous lifecycle processes of growth, development, survival, and reproduction and integrate these to estimate and predict expected fitness. Two measures of fitness are proposed as natural model predictions in the context of chemical risk assessment, lifetime reproductive success, and the expected annual propagation of genetic descendants, including self (intrinsic fitness). Six characteristics of the ELM approach are reviewed and illustrated with two ELM examples, the first for a general passerine lifecycle and the second for bald eagle (Haliaeetus leucocephalus). Throughout, the focus is on development of robust qualitative model predictions that depend as little as possible on specific parameter values. Thus, ELMs sacrifice precision to optimize generality in understanding the effects of chemicals across the diversity of avian lifecycles. Notably, the ELM approach integrates naturally with the adverse outcome pathway framework; this integration can be employed as a midtier risk assessment tool when lower tier analyses suggest potential risk.


Assuntos
Águias , Animais , Ecotoxicologia , Estágios do Ciclo de Vida , Reprodução , Medição de Risco
4.
Environ Sci Technol ; 54(10): 6213-6223, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32320227

RESUMO

A set of adverse outcome pathways (AOPs) linking inhibition of thyroperoxidase and deiodinase to impaired swim bladder inflation in fish has recently been developed. These AOPs help to establish links between these thyroid hormone (TH) disrupting molecular events and adverse outcomes relevant to aquatic ecological risk assessment. Until now, very little data on the effects of TH disruption on inflation of the anterior chamber (AC) of the swim bladder were available. The present study used zebrafish exposure experiments with three model compounds with distinct thyroperoxidase and deiodinase inhibition potencies (methimazole, iopanoic acid, and propylthiouracil) to evaluate this linkage. Exposure to all three chemicals decreased whole body triiodothyronine (T3) concentrations, either through inhibition of thyroxine (T4) synthesis or through inhibition of Dio mediated conversion of T4 to T3. A quantitative relationship between reduced T3 and reduced AC inflation was established, a critical key event relationship linking impaired swim bladder inflation to TH disruption. Reduced inflation of the AC was directly linked to reductions in swimming distance compared to controls as well as to chemical-exposed fish whose ACs inflated. Together the data provide compelling support for AOPs linking TH disruption to impaired AC inflation in fish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Embrião não Mamífero , Iodeto Peroxidase , Tiroxina , Tri-Iodotironina , Bexiga Urinária
5.
Environ Sci Technol ; 54(14): 8491-8499, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32584560

RESUMO

A growing number of environmental pollutants are known to adversely affect the thyroid hormone system, and major gaps have been identified in the tools available for the identification, and the hazard and risk assessment of these thyroid hormone disrupting chemicals. We provide an example of how the adverse outcome pathway (AOP) framework and associated data generation can address current testing challenges in the context of fish early life stage tests, and fish tests in general. We demonstrate how a suite of assays covering biological processes involved in the underlying toxicological pathways can be implemented in a tiered screening and testing approach for thyroid hormone disruption, using the levels of assessment of the OECD's Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals as a guide.


Assuntos
Rotas de Resultados Adversos , Disruptores Endócrinos , Poluentes Ambientais , Animais , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Peixes , Medição de Risco , Hormônios Tireóideos
6.
Environ Sci Technol ; 53(2): 973-983, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30548063

RESUMO

While chemical analysis of contaminant mixtures remains an essential component of environmental monitoring, bioactivity-based assessments using in vitro systems increasingly are used in the detection of biological effects. Historically, in vitro assessments focused on a few biological pathways, for example, aryl hydrocarbon receptor (AhR) or estrogen receptor (ER) activities. High-throughput screening (HTS) technologies have greatly increased the number of biological targets and processes that can be rapidly assessed. Here we screened extracts of surface waters from a nationwide survey of United States streams for bioactivities associated with 69 different end points using two multiplexed HTS assays. Bioactivity of extracts from 38 streams was evaluated and compared with concentrations of over 700 analytes to identify chemicals contributing to observed effects. Eleven primary biological end points were detected. Pregnane X receptor (PXR) and AhR-mediated activities were the most commonly detected. Measured chemicals did not completely account for AhR and PXR responses. Surface waters with AhR and PXR effects were associated with low intensity, developed land cover. Likewise, elevated bioactivities frequently associated with wastewater discharges included endocrine-related end points ER and glucocorticoid receptor. These results underscore the value of bioassay-based monitoring of environmental mixtures for detecting biological effects that could not be ascertained solely through chemical analyses.


Assuntos
Rios , Poluentes Químicos da Água , Misturas Complexas , Monitoramento Ambiental , Inquéritos e Questionários , Estados Unidos
7.
Environ Sci Technol ; 53(17): 10470-10478, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386814

RESUMO

Quantitative adverse outcome pathways (qAOPs) describe quantitative response-response relationships that can predict the probability or severity of an adverse outcome for a given magnitude of chemical interaction with a molecular initiating event. However, the taxonomic domain of applicability for these predictions is largely untested. The present study began defining this applicability for a previously described qAOP for aromatase inhibition leading to decreased fecundity developed using data from fathead minnow (Pimephales promelas). This qAOP includes quantitative response-response relationships describing plasma 17ß-estradiol (E2) as a function of plasma fadrozole, plasma vitellogenin (VTG) as a function of plasma E2, and fecundity as a function of plasma VTG. These quantitative response-response relationships simulated plasma E2, plasma VTG, and fecundity measured in female zebrafish (Danio rerio) exposed to fadrozole for 21 days but not these responses measured in female Japanese medaka (Oryzias latipes). However, Japanese medaka had different basal levels of plasma E2, plasma VTG, and fecundity. Normalizing basal levels of each measurement to equal those of female fathead minnow enabled the relationships to accurately simulate plasma E2, plasma VTG, and fecundity measured in female Japanese medaka. This suggests that these quantitative response-response relationships are conserved across these three fishes when considering relative change rather than absolute measurements. The present study represents an early step toward defining the appropriate taxonomic domain of applicability and extending the regulatory applications of this qAOP.


Assuntos
Aromatase , Cyprinidae , Animais , Estradiol , Fadrozol , Feminino , Fertilidade , Oócitos , Vitelogeninas
8.
Environ Sci Technol ; 52(23): 13960-13971, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30351027

RESUMO

High-throughput screening (HTS) and computational technologies have emerged as important tools for chemical hazard identification. The US Environmental Protection Agency (EPA) launched the Toxicity ForeCaster (ToxCast) Program, which has screened thousands of chemicals in hundreds of mammalian-based HTS assays for biological activity. The data are being used to prioritize toxicity testing on those chemicals likely to lead to adverse effects. To use HTS assays in predicting hazard to both humans and wildlife, it is necessary to understand how broadly these data may be extrapolated across species. The US EPA Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS; https://seqapass.epa.gov/seqapass/ ) tool was used to assess conservation of the 484 protein targets represented in the suite of ToxCast assays and other HTS assays. To demonstrate the utility of the SeqAPASS data for guiding extrapolation, case studies were developed which focused on targets of interest to the US Endocrine Disruptor Screening Program and the Organisation for Economic Cooperation and Development. These case studies provide a line of evidence for conservation of endocrine targets across vertebrate species, with few exceptions, and demonstrate the utility of SeqAPASS for defining the taxonomic domain of applicability for HTS results and identifying organisms for suitable follow-up toxicity tests.


Assuntos
Disruptores Endócrinos , Ensaios de Triagem em Larga Escala , Animais , Humanos , Alinhamento de Sequência , Testes de Toxicidade , Estados Unidos , United States Environmental Protection Agency
9.
Gen Comp Endocrinol ; 266: 87-100, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29733815

RESUMO

The hypothalamic-pituitary-thyroid (HPT) axis is known to play a crucial role in the development of teleost fish. However, knowledge of endogenous transcription profiles of thyroid-related genes in developing teleosts remains fragmented. We selected two model teleost species, the fathead minnow (Pimephales promelas) and the zebrafish (Danio rerio), to compare the gene transcription ontogeny of the HPT axis. Control organisms were sampled at several time points during embryonic and larval development until 33 days post-fertilization. Total RNA was extracted from pooled, whole fish, and thyroid-related mRNA expression was evaluated using quantitative polymerase chain reaction. Gene transcripts examined included: thyrotropin-releasing hormone receptor (trhr), thyroid-stimulating hormone receptor (tshr), sodium-iodide symporter (nis), thyroid peroxidase (tpo), thyroglobulin (tg), transthyretin (ttr), deiodinases 1, 2, 3a, and 3b (dio1, dio2, dio3a and 3b), and thyroid hormone receptors alpha and beta (thrα and ß). A loess regression method was successful in identifying maxima and minima of transcriptional expression during early development of both species. Overall, we observed great similarities between the species, including maternal transfer, at least to some extent, of almost all transcripts (confirmed in unfertilized eggs), increasing expression of most transcripts during hatching and embryo-larval transition, and indications of a fully functional HPT axis in larvae. These data will aid in the development of hypotheses on the role of certain genes and pathways during development. Furthermore, this provides a background reference dataset for designing and interpreting targeted transcriptional expression studies both for fundamental research and for applications such as toxicology.


Assuntos
Cyprinidae/embriologia , Cyprinidae/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Glândula Tireoide/metabolismo , Transcrição Gênica , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Desenvolvimento Embrionário , Proteínas de Peixes/metabolismo , Larva/metabolismo , Análise de Componente Principal , Especificidade da Espécie
10.
Environ Sci Technol ; 51(8): 4661-4672, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28355063

RESUMO

A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose-response, and time-course predictions that can support regulatory decision-making. Herein we describe several facets of qAOPs, including (a) motivation for development, (b) technical considerations, (c) evaluation of confidence, and (d) potential applications. The qAOP used as an illustrative example for these points describes the linkage between inhibition of cytochrome P450 19A aromatase (the MIE) and population-level decreases in the fathead minnow (FHM; Pimephales promelas). The qAOP consists of three linked computational models for the following: (a) the hypothalamic-pitutitary-gonadal axis in female FHMs, where aromatase inhibition decreases the conversion of testosterone to 17ß-estradiol (E2), thereby reducing E2-dependent vitellogenin (VTG; egg yolk protein precursor) synthesis, (b) VTG-dependent egg development and spawning (fecundity), and (c) fecundity-dependent population trajectory. While development of the example qAOP was based on experiments with FHMs exposed to the aromatase inhibitor fadrozole, we also show how a toxic equivalence (TEQ) calculation allows use of the qAOP to predict effects of another, untested aromatase inhibitor, iprodione. While qAOP development can be resource-intensive, the quantitative predictions obtained, and TEQ-based application to multiple chemicals, may be sufficient to justify the cost for some applications in regulatory decision-making.


Assuntos
Inibidores da Aromatase/toxicidade , Fadrozol/toxicidade , Animais , Cyprinidae , Estradiol/metabolismo , Modelos Teóricos , Valor Preditivo dos Testes , Vitelogeninas/metabolismo
11.
Environ Sci Technol ; 51(8): 4705-4713, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28328210

RESUMO

Studies worldwide have demonstrated the occurrence of feminized male fish at sites impacted by human and animal wastes. A variety of chemicals could contribute to this phenomenon, but those receiving the greatest attention in terms of research and monitoring have been 17ß-estradiol (ß-E2) and 17α-ethinylestradiol, due both to their prevalence in the environment and strong estrogenic potency. A third steroid, estrone (E1), also can occur at high concentrations in surface waters but generally has been of lesser concern due to its relatively lower affinity for vertebrate estrogen receptors. In an initial experiment, male fathead minnow (Pimephales promelas) adults were exposed for 4-d to environmentally relevant levels of waterborne E1, which resulted in plasma ß-E2 concentrations similar to those found in reproductively active females. In a second exposure we used 13C-labeled E1, together with liquid chromatography-tandem mass spectrometry, to demonstrate that elevated ß-E2 measured in the plasma of the male fish was indeed derived from the external environment, most likely via a conversion catalyzed by one or more 17ß-hydroxysteroid dehydrogenases. The results of our studies suggest that the potential impact of E1 as an environmental estrogen currently is underestimated.


Assuntos
Estrogênios , Estrona , Animais , Cyprinidae/sangue , Exposição Ambiental , Estradiol/sangue , Humanos , Masculino
12.
Environ Sci Technol ; 51(15): 8701-8712, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28651047

RESUMO

We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two different wastewater treatment plant discharge sites in the Saint Louis Bay, Duluth, MN and one upstream reference site. The biological impact of 51 chemicals detected in the surface water of 133 targeted chemicals was determined using biochemical endpoints, exposure activity ratios for biological and estrogenic responses, known chemical:gene interactions from biological pathways and knowledge bases, and analysis of the covariance of ovary gene expression with surface water chemistry. Thirty-two chemicals were significantly linked by covariance with expressed genes. No estrogenic impact on biochemical endpoints was observed in male or female minnows. However, bisphenol A (BPA) was identified by chemical:gene covariation as the most impactful estrogenic chemical across all exposure sites. This was consistent with identification of estrogenic effects on gene expression, high BPA exposure activity ratios across all test sites, and historical analysis of the study area. Gene expression analysis also indicated the presence of nontargeted chemicals including chemotherapeutics consistent with a local hospital waste stream. Overall impacts on gene expression appeared to be related to changes in treatment plant function during rain events. This approach appears useful in examining the impacts of complex mixtures on fish and offers a potential route in linking chemical exposure to adverse outcomes that may reduce population sustainability.


Assuntos
Cyprinidae/genética , Águas Residuárias , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Estrona , Feminino , Masculino , Testes de Mutagenicidade , Medição de Risco
13.
Environ Sci Technol ; 51(15): 8713-8724, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671818

RESUMO

Current environmental monitoring approaches focus primarily on chemical occurrence. However, based on concentration alone, it can be difficult to identify which compounds may be of toxicological concern and should be prioritized for further monitoring, in-depth testing, or management. This can be problematic because toxicological characterization is lacking for many emerging contaminants. New sources of high-throughput screening (HTS) data, such as the ToxCast database, which contains information for over 9000 compounds screened through up to 1100 bioassays, are now available. Integrated analysis of chemical occurrence data with HTS data offers new opportunities to prioritize chemicals, sites, or biological effects for further investigation based on concentrations detected in the environment linked to relative potencies in pathway-based bioassays. As a case study, chemical occurrence data from a 2012 study in the Great Lakes Basin along with the ToxCast effects database were used to calculate exposure-activity ratios (EARs) as a prioritization tool. Technical considerations of data processing and use of the ToxCast database are presented and discussed. EAR prioritization identified multiple sites, biological pathways, and chemicals that warrant further investigation. Prioritized bioactivities from the EAR analysis were linked to discrete adverse outcome pathways to identify potential adverse outcomes and biomarkers for use in subsequent monitoring efforts.


Assuntos
Bioensaio , Monitoramento Ambiental , Ensaios de Triagem em Larga Escala , Testes de Toxicidade , Biomarcadores , Great Lakes Region , Humanos , Lagos
14.
Gen Comp Endocrinol ; 252: 79-87, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28736226

RESUMO

Cytochrome P450 aromatase catalyzes conversion of C19 androgens to C18 estrogens and is critical for normal reproduction in female vertebrates. Fadrozole is a model aromatase inhibitor that has been shown to suppress estrogen production in the ovaries of fish. However, little is known about the early impacts of aromatase inhibition on steroid production and gene expression in fish. Adult female fathead minnows (Pimephales promelas) were exposed via water to 0, 5, or 50µg fadrozole/L for a time-course of 0.5, 1, 2, 4, and 6h, or 0 or 50µg fadrozole/L for a time-course of 6, 12, and 24h. We examined ex vivo ovarian 17ß-estradiol (E2) and testosterone (T) production, and plasma E2 concentrations from each study. Expression profiles of genes known or hypothesized to be impacted by fadrozole including aromatase (cytochrome P450 [cyp] 19a1a), steriodogenic acute regulatory protein (star), cytochrome P450 side-chain cleavage (cyp11a), cytochrome P450 17 alpha hydroxylase/17,20 lyase (cyp17), and follicle stimulating hormone receptor (fshr) were measured in the ovaries by quantitative real-time polymerase chain reaction (QPCR). In addition, broader ovarian gene expression was examined using a 15k fathead minnow microarray. The 5µg/L exposure significantly reduced ex vivo E2 production by 6h. In the 50µg/L treatment, ex vivo E2 production was significantly reduced after just 2h of exposure and remained depressed at all time-points examined through 24h. Plasma E2 concentrations were significantly reduced as early as 4h after initiation of exposure to either 5 or 50µg fadrozole/L and remained depressed throughout 24h in the 50µg/L exposure. Ex vivo T concentrations remained unchanged throughout the time-course. Expression of transcripts involved in steroidogenesis increased within the first 24h suggesting rapid induction of a mechanism to compensate for fadrozole inhibition of aromatase. Microarray results also showed fadrozole exposure caused concentration- and time-dependent changes in gene expression profiles in many HPG-axis pathways as early as 4h. This study provides insights into the very rapid effects of aromatase inhibition on steroidogenic processes in fish.


Assuntos
Inibidores da Aromatase/farmacologia , Cyprinidae/genética , Fadrozol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ovário/metabolismo , Esteroides/biossíntese , Animais , Cyprinidae/sangue , Cyprinidae/metabolismo , Estradiol/sangue , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Testosterona/sangue , Transcriptoma/genética
15.
BMC Genomics ; 17: 84, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26822894

RESUMO

BACKGROUND: A very large and rapidly growing collection of transcriptomic profiles in public repositories is potentially of great value to developing data-driven bioinformatics applications for toxicology/ecotoxicology. Modeled on human connectivity mapping (Cmap) in biomedical research, this study was undertaken to investigate the utility of an analogous Cmap approach in ecotoxicology. Over 3500 zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) transcriptomic profiles, each associated with one of several dozen chemical treatment conditions, were compiled into three distinct collections of rank-ordered gene lists (ROGLs) by species and microarray platforms. Individual query signatures, each consisting of multiple gene probes differentially expressed in a chemical condition, were used to interrogate the reference ROGLs. RESULTS: Informative connections were established at high success rates within species when, as defined by their mechanisms of action (MOAs), both query signatures and ROGLs were associated with the same or similar chemicals. Thus, a simple query signature functioned effectively as an exposure biomarker without need for a time-consuming process of development and validation. More importantly, a large reference database of ROGLs also enabled a query signature to cross-interrogate other chemical conditions with overlapping MOAs, leading to novel groupings and subgroupings of seemingly unrelated chemicals at a finer resolution. This approach confirmed the identities of several estrogenic chemicals, as well as a polycyclic aromatic hydrocarbon and a neuro-toxin, in the largely uncharacterized water samples near several waste water treatment plants, and thus demonstrates its future potential utility in real world applications. CONCLUSIONS: The power of Cmap should grow as chemical coverages of ROGLs increase, making it a framework easily scalable in the future. The feasibility of toxicity extrapolation across fish species using Cmap needs more study, however, as more gene expression profiles linked to chemical conditions common to multiple fish species are needed.


Assuntos
Transcriptoma/genética , Animais , Cyprinidae/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/fisiologia , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
16.
Regul Toxicol Pharmacol ; 72(3): 514-37, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25863193

RESUMO

Systematic consideration of scientific support is a critical element in developing and, ultimately, using adverse outcome pathways (AOPs) for various regulatory applications. Though weight of evidence (WoE) analysis has been proposed as a basis for assessment of the maturity and level of confidence in an AOP, methodologies and tools are still being formalized. The Organization for Economic Co-operation and Development (OECD) Users' Handbook Supplement to the Guidance Document for Developing and Assessing AOPs (OECD 2014a; hereafter referred to as the OECD AOP Handbook) provides tailored Bradford-Hill (BH) considerations for systematic assessment of confidence in a given AOP. These considerations include (1) biological plausibility and (2) empirical support (dose-response, temporality, and incidence) for Key Event Relationships (KERs), and (3) essentiality of key events (KEs). Here, we test the application of these tailored BH considerations and the guidance outlined in the OECD AOP Handbook using a number of case examples to increase experience in more transparently documenting rationales for assigned levels of confidence to KEs and KERs, and to promote consistency in evaluation within and across AOPs. The major lessons learned from experience are documented, and taken together with the case examples, should contribute to better common understanding of the nature and form of documentation required to increase confidence in the application of AOPs for specific uses. Based on the tailored BH considerations and defining questions, a prototype quantitative model for assessing the WoE of an AOP using tools of multi-criteria decision analysis (MCDA) is described. The applicability of the approach is also demonstrated using the case example aromatase inhibition leading to reproductive dysfunction in fish. Following the acquisition of additional experience in the development and assessment of AOPs, further refinement of parameterization of the model through expert elicitation is recommended. Overall, the application of quantitative WoE approaches hold promise to enhance the rigor, transparency and reproducibility for AOP WoE determinations and may play an important role in delineating areas where research would have the greatest impact on improving the overall confidence in the AOP.


Assuntos
Medição de Risco/métodos , Animais , Inibidores da Aromatase/toxicidade , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Peixes , Reprodução/efeitos dos fármacos
17.
Environ Sci Technol ; 48(4): 2404-12, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24433150

RESUMO

The aim of this study was to explore the utility of "omics" approaches in monitoring aquatic environments where complex, often unknown stressors make chemical-specific risk assessment untenable. We examined changes in the fathead minnow (Pimephales promelas) ovarian transcriptome following 4-day exposures conducted at three sites in Minnesota (MN, USA). Within each site, fish were exposed to water from three locations along a spatial gradient relative to a wastewater treatment plant (WWTP) discharge. After exposure, site-specific impacts on gene expression in ovaries were assessed. Using an intragradient point of comparison, biological responses specifically associated with the WWTP effluent were identified using functional enrichment analyses. Fish exposed to water from locations downstream of the effluent discharges exhibited many transcriptomic responses in common with those exposed to the effluent, indicating that effects of the discharge do not fully dissipate downstream. Functional analyses showed a range of biological pathways impacted through effluent exposure at all three sites. Several of those impacted pathways at each site could be linked to potential adverse reproductive outcomes associated with the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows, specifically signaling pathways associated with oocyte meiosis, TGF-beta signaling, gonadotropin-releasing hormone (GnRH) and epidermal growth factor receptor family (ErbB), and gene sets associated with cyclin B-1 and metalloproteinase. The utility of this approach comes from the ability to identify biological responses to pollutant exposure, particularly those that can be tied to adverse outcomes at the population level and those that identify molecular targets for future studies.


Assuntos
Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Animais , Cyprinidae/genética , Monitoramento Ambiental , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Geografia , Minnesota , Análise de Componente Principal , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos
18.
Environ Sci Technol ; 48(4): 2385-94, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24409827

RESUMO

The present study investigated whether a combination of targeted analytical chemistry information with unsupervised, data-rich biological methodology (i.e., transcriptomics) could be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The effects of WWTP effluents on fish exposed to ambient, receiving waters were studied at three locations with distinct WWTP and watershed characteristics. At each location, 4 d exposures of male fathead minnows to the WWTP effluent and upstream and downstream ambient waters were conducted. Transcriptomic analyses were performed on livers using 15,000 feature microarrays, followed by a canonical pathway and gene set enrichment analyses. Enrichment of gene sets indicative of teleost brain-pituitary-gonadal-hepatic (BPGH) axis function indicated that WWTPs serve as an important source of endocrine active chemicals (EACs) that affect the BPGH axis (e.g., cholesterol and steroid metabolism were altered). The results indicated that transcriptomics may even pinpoint pertinent adverse outcomes (i.e., liver vacuolization) and groups of chemicals that preselected chemical analytes may miss. Transcriptomic Effects-Based monitoring was capable of distinguishing sites, and it reflected chemical pollution gradients, thus holding promise for assessment of relative contributions of point sources to pollution and the efficacy of pollution remediation.


Assuntos
Disruptores Endócrinos/toxicidade , Monitoramento Ambiental/métodos , Transcriptoma/genética , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Poluição da Água/análise , Purificação da Água , Animais , Cyprinidae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Análise de Componente Principal , Estações do Ano , Transcriptoma/efeitos dos fármacos
19.
Gen Comp Endocrinol ; 203: 193-202, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24704562

RESUMO

Aromatase, a member of the cytochrome P450 superfamily, is a key enzyme in estradiol synthesis that catalyzes the aromatization of androgens into estrogens in ovaries. Here, we used an integrated approach to assess the mechanistic basis of the direct effects of aromatase inhibition, as well as adaptation and recovery processes in fish. We exposed female fathead minnows (Pimephales promelas) via the water to 30 µg/L of a model aromatase inhibitor, fadrozole, during 8 days (exposure phase). Fish were then held in clean water for 8 more days (recovery phase). Samples were collected at 1, 2, 4, and 8 days of both the exposure and the recovery phases. Transcriptomics, metabolomics, and network inference were used to understand changes and infer connections at the transcript and metabolite level in the ovary. Apical endpoints directly indicative of endocrine function, such as plasma estradiol, testosterone, and vitellogenin levels were also measured. An integrated analysis of the data revealed changes in gene expression consistent with increased testosterone in fadrozole-exposed ovaries. Metabolites such as glycogen and taurine were strongly correlated with increased testosterone levels. Comparison of in vivo and ex vivo steroidogenesis data suggested the accumulation of steroidogenic enzymes, including aromatase, as a mechanism to compensate for aromatase inhibition.


Assuntos
Inibidores da Aromatase/farmacologia , Aromatase/metabolismo , Cyprinidae/genética , Cyprinidae/metabolismo , Fadrozol/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Androgênios/sangue , Animais , Estradiol/sangue , Feminino , Glicogênio/sangue , Humanos , Masculino , Metabolômica , Taurina/sangue , Testosterona/sangue , Transcriptoma/efeitos dos fármacos , Vitelogeninas/sangue
20.
Environ Toxicol Chem ; 43(6): 1406-1422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38651999

RESUMO

Accounting for intraspecific and interspecific competition when assessing the effects of chemical and nonchemical stressors is an important uncertainty in ecological risk assessments. We developed novel projection of interspecific competition (PIC) matrices that allow for analysis of population dynamics of two or more species exposed to a given stressor(s) that compete for shared resources within a landscape. We demonstrate the application of PIC matrices to investigate the population dynamics of two hypothetical fish species that compete with one another and have differences in net reproductive rate and intrinsic rate of population increase. Population status predictions were made under scenarios that included exposure to a chemical stressor that reduced fecundity for one or both species. The results of our simulations demonstrated that measures obtained from the life table and Leslie matrix of an organism, including net reproductive rate and intrinsic rate of increase, can result in erroneous conclusions of population status and viability in the absence of a consideration of resource limitation and interspecific competition. This modeling approach can be used in conjunction with field monitoring efforts and/or laboratory testing to link effects due to stressors to possible outcomes within an ecosystem. In addition, PIC matrices could be combined with adverse outcome pathways to allow for ecosystem projection based on taxonomic conservation of molecular targets of chemicals to predict the likelihood of relative cross-species susceptibility. Overall, the present study shows how PIC matrices can integrate effects across the life cycles of multiple species, provide a linkage between endpoints observed in individual and population-level responses, and project outcomes at the community level for multiple generations for multiple species that compete for limited resources. Environ Toxicol Chem 2024;43:1406-1422. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Peixes , Dinâmica Populacional , Animais , Medição de Risco , Ecossistema , Modelos Biológicos , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA