Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 712, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060976

RESUMO

BACKGROUND: The effects of different photoperiods on plant phytochemical synthesis can be improved by adjusting the daily light integral. Photoperiod is one of the most important environmental factors that control growth, plant's internal rhythm and the synthesis of secondary metabolites. Information about the appropriate standard in terms of photoperiod for growing basil microgreens as one of the most important medicinal plants is limited. In this study, the effects of five different photoperiods, 6 (6 h × 3 cycles), 8 (8 h × 2 cycles), 16, 18, and 24 h day- 1 on the yield, photosynthesis and synthesis of secondary metabolites of three cultivars and one genotype of basil microgreens in floating system were evaluated. The purpose of this research was to determine the feasibility of using permanent light in growing basil microgreens and to create the best balance between beneficial secondary metabolites and performance. RESULTS: The results showed that the effects of photoperiod and cultivar on all investigated traits and their interaction on photosynthetic pigments, antioxidant capacity, total phenolic compounds, proline content and net photosynthesis rate were significantly different at the 1% level. The highest levels of vitamin C, flavonoids, anthocyanins, yield and antioxidant potential composite index (APCI) were obtained under the 24-h photoperiod. The highest antioxidant capacity was obtained for the Kapoor cultivar, and the highest total phenolic compound and proline contents were measured for the Ablagh genotype under a 24-h photoperiod. The highest yield (4.36 kg m- 2) and APCI (70.44) were obtained for the Ablagh genotype. The highest nitrate content was obtained with a photoperiod of 18 h for the Kapoor cultivar. The highest net photosynthesis rate was related to the Violeto cultivar under a 24-hour photoperiod (7.89 µmol CO2 m- 2 s- 1). Antioxidant capacity and flavonoids had a positive correlation with phenolic compounds and vitamin C. Yield had a positive correlation with antioxidant capacity, flavonoids, vitamin C, APCI, and proline. CONCLUSIONS: Under continuous light conditions, basil microgreens resistance to light stress by increasing the synthesis of secondary metabolites and the increase of these biochemical compounds made basil microgreens increase their performance along with the increase of these health-promoting compounds. The best balance between antioxidant compounds and performance was achieved in continuous red + blue light. Based on these results, the use of continuous artificial LED lighting, due to the increase in plant biochemical with antioxidant properties and yield, can be a suitable strategy for growing basil microgreens in floating systems.


Assuntos
Ocimum basilicum , Fotoperíodo , Fotossíntese , Ocimum basilicum/genética , Ocimum basilicum/metabolismo , Ocimum basilicum/crescimento & desenvolvimento , Antioxidantes/metabolismo , Metabolismo Secundário , Genótipo
2.
Plants (Basel) ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794463

RESUMO

Different LED light spectra (LS) are absorbed by different plant photoreceptors and can control biomass and plant secondary metabolite synthesis. In this study, the effects of continuous-spectrum LED lights (red, blue, white, red + blue, and 12 h blue + 12 h red) on the production value, antioxidant compounds, and biomass of basil (Ocimum basilicum L.) microgreens (Red Rubin, Violeto, and Kapoor cultivars and the Ablagh genotype) were investigated. The results showed significant effects of LS on cultivar (Cv) and the interaction of LS and Cv on the studied traits. The highest quantitys of chlorophyll a, total chlorophyll, and nitrate were obtained in Violeto under blue lighting. Red lighting enhanced starch synthesis in Red Rubin and flavonoids in the Violeto Cv. The highest biomass (4.54 kg m-2) was observed in the Ablagh genotype and the highest carbohydrate synthesis in Violeto Cv in the red + blue treatment. The highest anthocyanin content (26.33 mg 100 g-1 FW) was observed for Red Rubin Cv under 12 h blue + 12 h red light. The greatest antioxidant capacity (83.57% inhibition), the highest levels of phenolic compounds (2027.25 mg GA 100 g-1 FW), vitamin C (405.76 mg 100 g-1 FW), proline, antioxidant potential composite index (APCI), and the greatest production values were obtained for the Ablagh genotype under blue lighting. Taken together, the experiment findings indicate that growing the Ablagh genotype under continuous blue lighting can increase the antioxidant capacity, phenolic compounds, and vitamin C and that this LED light spectrum can be used as a practical method to produce basil microgreens with high nutritional health value.

3.
Plants (Basel) ; 12(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514265

RESUMO

Basil is a great source of phytochemicals such as polyphenols, vitamin C, anthocyanin, and flavonoids. In this work, the biochemical compounds, antioxidant capacity, leaf color profile, and yield of 21 cultivars and genotypes of basil microgreen were investigated. Results showed that the highest antioxidant potential composite index (APCI) was measured in Persian Ablagh genotype (70.30). Twenty-one basil genotypes were classified into four clusters, including cluster 1 (lowest antioxidant capacity and total phenolic compounds), cluster 2 (lowest anthocyanin, vitamin C and APCI index), cluster 3 (highest vitamin C, total phenolic compounds, antioxidant capacity and APCI index), and cluster 4 (highest levels of anthocyanin). The principal components analysis (PCA) of basil genotypes showed diversity in terms of phytochemical components, and F1, F2, F3, and F4 explained the variation at the rate of 78.12%. The average annual temperature of the origin of basil seeds plays an important role in the synthesis of antioxidant content. Most of the seeds with moderate origin had a higher APCI index. The Persian Ablagh genotype, Violeto, and Kapoor cultivars can be recommended, according to their APCI index and yield. These cultivars can be used individually or in different ratios to produce different biochemical substances with different concentrations for various purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA