Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 113(3): 453-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24284816

RESUMO

BACKGROUND AND AIMS: Climate change is expected to alter the geographic range of many plant species dramatically. Predicting this response will be critical to managing the conservation of plant resources and the effects of invasive species. The aim of this study was to predict the response of temperate homosporous ferns to climate change. METHODS: Genetic diversity and changes in distribution range were inferred for the diploid rock fern Asplenium fontanum along a South-North transect, extending from its putative last glacial maximum (LGM) refugia in southern France towards southern Germany and eastern-central France. This study reconciles observations from distribution models and phylogeographic analyses derived from plastid and nuclear diversity. KEY RESULTS: Genetic diversity distribution and niche modelling propose that genetic diversity accumulates in the LGM climate refugium in southern France with the formation of a diversity gradient reflecting a slow, post-LGM range expansion towards the current distribution range. Evidence supports the fern's preference for outcrossing, contradicting the expectation that homosporous ferns would populate new sites by single-spore colonization. Prediction of climate and distribution range change suggests that a dramatic loss of range and genetic diversity in this fern is possible. The observed migration is best described by the phalanx expansion model. CONCLUSIONS: The results suggest that homosporous ferns reproducing preferentially by outcrossing accumulate genetic diversity primarily in LGM climate refugia and may be threatened if these areas disappear due to global climate change.


Assuntos
Gleiquênias/genética , Variação Genética , Modelos Estatísticos , Mudança Climática , Conservação dos Recursos Naturais , DNA de Cloroplastos/genética , Demografia , Loci Gênicos , Marcadores Genéticos/genética , Genética Populacional , Isoenzimas/genética , Filogeografia , Folhas de Planta/genética , Proteínas de Plantas/genética , Reprodução , Software
2.
Ann Bot ; 108(1): 143-57, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21593062

RESUMO

BACKGROUND AND AIMS: Successful establishment of newly formed polyploid species depends on several interlinked genetic and ecological factors. These include genetic diversity within and among individuals, chromosome behaviour and fertility, novel phenotypes resulting from novel genomic make-up and expression, intercytotypic and interspecific competition, and adaptation to distinct habitats. The allotetraploid rock fern Asplenium majoricum is known from one small population in Valencia, Spain, and several larger populations on the Balearic island of Majorca. In Valencia, it occurs sympatrically with its diploid parents, A. fontanum subsp. fontanum and A. petrarchae subsp. bivalens, and their diploid hybrid A. × protomajoricum. This highly unusual situation allowed the study of polyploid genetic diversity and its relationship to the formation and establishment of nascent polyploid lineages. METHODS: Genetic variation for isozyme and chloroplast DNA markers was determined for A. majoricum and A. × protomajoricum sampled thoroughly from known sites in Majorca and Valencia. Results were compared with variation determined previously for the diploid parent taxa. KEY RESULTS: A highly dynamic system with recurring diploid hybrid and allotetraploid formation was discovered. High diversity in the small Valencian A. majoricum population indicates multiple de novo origins from diverse parental genotypes, but most of these lineages become extinct without becoming established. The populations on Majorca most probably represent colonization(s) from Valencia rather than an in situ origin. Low genetic diversity suggests that this colonization may have occurred only once. CONCLUSIONS: There is a striking contrast in success of establishment of the Majorcan and Valencian populations of A. majoricum. Chance founding of populations in a habitat where neither A. fontanum subsp. fontanum nor A. petrarchae subsp. bivalens occurs appears to have been a key factor enabling the establishment of A. majoricum on Majorca. Successful establishment of this polyploid is probably dependent on geographic isolation from diploid progenitor competition.


Assuntos
Cromossomos de Plantas/genética , Gleiquênias/genética , Marcadores Genéticos/genética , Poliploidia , Sequência de Bases , DNA de Cloroplastos/genética , Diploide , Ecologia , Gleiquênias/enzimologia , Frequência do Gene/genética , Genes de Plantas/genética , Especiação Genética , Variação Genética , Genética Populacional , Genótipo , Geografia , Hibridização Genética , Isoenzimas/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Espanha
3.
Ann Bot ; 108(2): 241-52, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21712298

RESUMO

BACKGROUND AND AIMS: Anatolia is a biologically diverse, but phylogeographically under-explored region. It is described as either a centre of origin and long-term Pleistocene refugium, or as a centre for genetic amalgamation, fed from distinct neighbouring refugia. These contrasting hypotheses are tested through a global phylogeographic analysis of the arctic-alpine herb, Arabis alpina. METHODS: Herbarium and field collections were used to sample comprehensively the entire global range, with special focus on Anatolia and Levant. Sequence variation in the chloroplast DNA trnL-trnF region was examined in 483 accessions. A haplotype genealogy was constructed and phylogeographic methods, demographic analysis and divergence time estimations were used to identify the centres of diversity and to infer colonization history. KEY RESULTS: Fifty-seven haplotypes were recovered, belonging to three haplogroups with non-overlapping distributions in (1) North America/Europe/northern Africa, (2) the Caucuses/Iranian Plateau/Arabian Peninsula and (3) Ethiopia-eastern Africa. All haplogroups occur within Anatolia, and all intermediate haplotypes linking the three haplogroups are endemic to central Anatolia and Levant, where haplotypic and nucleotide diversities exceeded all other regions. The local pattern of haplotype distribution strongly resembles the global pattern, and the haplotypes began to diverge approx. 2·7 Mya, coinciding with the climate cooling of the early Middle Pleistocene. CONCLUSIONS: The phylogeographic structure of Arabis alpina is consistent with Anatolia being the cradle of origin for global genetic diversification. The highly structured landscape in combination with the Pleistocene climate fluctuations has created a network of mountain refugia and the accumulation of spatially arranged genotypes. This local Pleistocene population history has subsequently left a genetic imprint at the global scale, through four range expansions from the Anatolian diversity centre into Europe, the Near East, Arabia and Africa. Hence this study also illustrates the importance of sampling and scaling effects when translating global from local diversity patterns during phylogeographic analyses.


Assuntos
Arabis/genética , Ecossistema , DNA de Cloroplastos/genética , Europa Oriental , Evolução Molecular , Variação Genética , Geografia , Haplótipos , Oriente Médio , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA/métodos
4.
Mol Ecol ; 17(3): 825-38, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18208486

RESUMO

Diversity patterns of the dioecious haploid Mediterranean moss Pleurochaete squarrosa were analysed from Central and Northwest Europe using nuclear and chloroplast DNA sequencing and enzyme electrophoresis. Across 69 populations, 38 distinct haploid multilocus genotypes (MLGs) were detected, but nearly all populations were clonal. Only five MLGs occurred in more than two regions, and two diversity hotspots were detected. The Kaiserstuhl mountains in Southwest Germany harboured 34 MLGs, 25 being endemic within Central Europe. Levels of linkage disequilibrium and population structure in Kaiserstuhl populations were similar to levels and structure in sexually reproducing populations in the Mediterranean Basin. In the Moselle-Nahe area, some 250 km north, a comparably high allelic diversity, but no evidence of recombination, was detected. Genetic diversity measures were significantly lower than estimates obtained in the Mediterranean Basin and a G(ST) of 0.89 signified extreme population differentiation. Mantel tests identified a positive correlation on genetic and geographical distance for distances up to 50 km. Seven nrITS and three cpDNA haplotypes were detected, their geographical structure mirroring enzyme data set results. Comparative analysis with Mediterranean data demonstrated multiple recolonization of Central Europe from both the Iberian Peninsula and the Balkans. A suture zone of genotypes was detected along the border of Belgium/France and Germany. Despite P. squarrosa having haploid spore and/or vegetative propagules dispersal, we found patterns of postglacial recolonization of Central Europe comparable with those reported in flowering plants and animals. This study demonstrates the importance of comparative research on population genetics and phylogeography of a diverse range of organisms.


Assuntos
Briófitas/genética , Briófitas/enzimologia , Briófitas/crescimento & desenvolvimento , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Eletroforese em Gel de Amido , Europa (Continente) , Variação Genética , Haplótipos/genética , Desequilíbrio de Ligação , Brotos de Planta/enzimologia , Brotos de Planta/genética , Reação em Cadeia da Polimerase , Polimorfismo Genético , Análise de Sequência de DNA
5.
PLoS One ; 9(9): e107479, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25226024

RESUMO

Level and partitioning of genetic diversity is expected to vary between contrasting habitats, reflecting differences in strength of ecological and evolutionary processes. Therefore, it is necessary to consider processes acting on different time scales when trying to explain diversity patterns in different parts of species' distributions. To explore how historical and contemporary factors jointly may influence patterns of genetic diversity and population differentiation, we compared genetic composition in the perennial herb Arabidopsis lyrata ssp. petraea from the northernmost parts of its distribution range on Iceland to that previously documented in Scandinavia. Leaf tissue and soil were sampled from ten Icelandic populations of A. lyrata. Seedlings were grown from soil samples, and tissue from above-ground and seed bank individuals were genotyped with 21 microsatellite markers. Seed bank density in Icelandic populations was low but not significantly different from that observed in Norwegian populations. While within-population genetic diversity was relatively high on Iceland (H(E) = 0.35), among-population differentiation was low (F(ST) = 0.10) compared to Norwegian and Swedish populations. Population differentiation was positively associated with geographical distance in both Iceland and Scandinavia, but the strength of this relationship varied between regions. Although topography and a larger distribution range may explain the higher differentiation between mountainous Norwegian relative to lowland populations in Sweden, these factors cannot explain the lower differentiation in Icelandic compared to Swedish populations. We propose that low genetic differentiation among Icelandic populations is not caused by differences in connectivity, but is rather due to large historical effective population sizes. Thus, rather than contemporary processes, historical factors such as survival of Icelandic lineages in northern refugia during the last glacial period may have contributed to the observed pattern.


Assuntos
Arabidopsis/genética , Estruturas Genéticas , Genética Populacional , Ecossistema , Meio Ambiente , Europa (Continente) , Variação Genética , Geografia , Repetições de Microssatélites , Densidade Demográfica , Dinâmica Populacional , Sementes/genética , Análise Espacial
6.
PLoS One ; 6(9): e25896, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21984953

RESUMO

BACKGROUND: The Qinghai-Tibetan Plateau (QTP) and its southern and southeastern mountain ranges, Himalaya-Hengduan Mountains (HHM), are one of the most extensive habitats for alpine plants in the world. How ferns occurring in QTP and HHM changed their distribution ranges in response to Quaternary climatic oscillations remains almost unknown. METHODOLOGY AND RESULTS: We employed sequences of two chloroplast DNA regions, rps4-trnS and trnL-trnF, to reconstruct phylogeography of the Sino-Himalayan fern Lepisorus clathratus, occurring mainly in the QTP and HHM. Individuals of this species have either dehiscent or indehiscent sporangia with the latter evolved from the plesiomorphic dehiscent forms. Based on a range-wide sampling, we detected 27 cpDNA haplotypes that were divided into five groups by network analyses. Populations in the Hengduan Mountains possess the highest genetic diversity, while a single haplogroup is detected across the north-central region. A distinct phylogeographical subdivision was detected between the Hengduan Mountains and north-central region by AMOVA analysis. The haplogroup distribution pattern, coalescence and AMOVA analysis suggest that a long term survival area (refugia) of the species was located in the Hengduan Mountains during glaciations, with probable range expansions into north-central regions during interglacial periods. Populations with indehiscent sporangium can carry private haplotypes and are inclined to maintain genetic homogeneity. One group with indehiscent sporangia most likely survived in situ on the QTP during glaciations. CONCLUSIONS/SIGNIFICANCE: This study for the first time sheds light on the response of alpine ferns in the QTP and HHM to the Quaternary climatic oscillations.


Assuntos
Altitude , Gleiquênias/classificação , Gleiquênias/genética , Filogeografia , China
7.
PLoS One ; 3(2): e1682, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18301759

RESUMO

BACKGROUND: High-throughput tools for pan-genomic study, especially the DNA microarray platform, have sparked a remarkable increase in data production and enabled a shift in the scale at which biological investigation is possible. The use of microarrays to examine evolutionary relationships and processes, however, is predominantly restricted to model or near-model organisms. METHODOLOGY/PRINCIPAL FINDINGS: This study explores the utility of Diversity Arrays Technology (DArT) in evolutionary studies of non-model organisms. DArT is a hybridization-based genotyping method that uses microarray technology to identify and type DNA polymorphism. Theoretically applicable to any organism (even one for which no prior genetic data are available), DArT has not yet been explored in exclusively wild sample sets, nor extensively examined in a phylogenetic framework. DArT recovered 1349 markers of largely low copy-number loci in two lineages of seed-free land plants: the diploid fern Asplenium viride and the haploid moss Garovaglia elegans. Direct sequencing of 148 of these DArT markers identified 30 putative loci including four routinely sequenced for evolutionary studies in plants. Phylogenetic analyses of DArT genotypes reveal phylogeographic and substrate specificity patterns in A. viride, a lack of phylogeographic pattern in Australian G. elegans, and additive variation in hybrid or mixed samples. CONCLUSIONS/SIGNIFICANCE: These results enable methodological recommendations including procedures for detecting and analysing DArT markers tailored specifically to evolutionary investigations and practical factors informing the decision to use DArT, and raise evolutionary hypotheses concerning substrate specificity and biogeographic patterns. Thus DArT is a demonstrably valuable addition to the set of existing molecular approaches used to infer biological phenomena such as adaptive radiations, population dynamics, hybridization, introgression, ecological differentiation and phylogeography.


Assuntos
Evolução Biológica , Genoma de Planta , Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Marcadores Genéticos , Filogenia , Pesquisa
8.
Mol Ecol ; 16(4): 709-22, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17284206

RESUMO

The Mediterranean Basin as one the world's most biologically diverse regions provides an interesting area for the study of plant evolution and spatial structure in plant populations. The dioecious moss Pleurochaete squarrosa is a widespread and common bryophyte in the Mediterranean Basin. Thirty populations were sampled for a study on molecular diversity and genetic structure, covering most major islands and mainland populations from Europe and Africa. A significant decline in nuclear and chloroplast sequence and allozyme variation within populations from west to east was observed. While DNA sequence data showed patterns of isolation by distance, allozyme markers did not. Instead, their considerable interpopulation genetic differentiation appeared to be unrelated to geographic distance. Similar high values for coefficients of gene diversity (G(ST)) in all data sets provided evidence of geographic isolation and limited gene flow among populations (i) within islands, (ii) within mainland areas, and (iii) between islands and mainland. Notably, populations in continental Spain are strongly genetically isolated from all other investigated areas. Surprisingly, there was no difference in gene diversity and G(ST) between islands and mainland areas. Thus, we conclude that large Mediterranean islands may function as 'mainland' for bryophytes. This hypothesis and its implication for conservation biology of cryptogamic plants warrant further investigation. While sexually reproducing populations were found all over the Mediterranean Basin, high levels of multilocus linkage disequilibrium provide evidence of mainly vegetative propagation even in populations where sexual reproduction was observed.


Assuntos
Briófitas/genética , Variação Genética , Genética Populacional , Sequência de Bases , Primers do DNA , DNA de Cloroplastos/genética , Geografia , Haplótipos/genética , Isoenzimas/análise , Desequilíbrio de Ligação , Região do Mediterrâneo , Dados de Sequência Molecular , Análise de Regressão , Reprodução/genética , Análise de Sequência de DNA , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA