Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(15): 3033-3037, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358454

RESUMO

Some biological questions are tough to solve through standard molecular and cell biological methods and naturally lend themselves to investigation by physical approaches. Below, a group of formally trained physicists discuss, among other things, how they apply physics to address biological questions and how physical approaches complement conventional biological approaches.


Assuntos
Biofísica/métodos , Modelos Biológicos , Física/métodos , Imagem Individual de Molécula , Biologia/educação , Biofísica/tendências , Cromossomos/química , Cromossomos/ultraestrutura , Simulação por Computador , Humanos , Proteínas Motores Moleculares/química , Origem da Vida , Física/educação , Imagem Individual de Molécula/métodos
2.
Mol Cell ; 79(1): 140-154.e7, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32464091

RESUMO

Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.


Assuntos
DNA Primase/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Holoenzimas/química , DNA Primase/genética , DNA Bacteriano , DNA Polimerase Dirigida por DNA/genética , DnaB Helicases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Holoenzimas/genética , Holoenzimas/metabolismo , Conformação Molecular , Ligação Proteica , Conformação Proteica
3.
Mol Cell ; 77(1): 17-25.e5, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31704183

RESUMO

Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol α-primase DNA polymerase activity in replication and show that Pol α-primase and the lagging-strand Pol δ can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.


Assuntos
DNA Polimerase III/genética , Replicação do DNA/genética , DNA/genética , Células Eucarióticas/fisiologia , DNA Polimerase I/genética , DNA Primase/genética , Saccharomyces cerevisiae/genética
4.
Chem Rev ; 123(23): 13419-13440, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37971892

RESUMO

The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.


Assuntos
Replicação do DNA , DNA , DNA/química , Conformação Molecular
5.
Nucleic Acids Res ; 51(1): e5, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321650

RESUMO

The activity of enzymes is traditionally characterised through bulk-phase biochemical methods that only report on population averages. Single-molecule methods are advantageous in elucidating kinetic and population heterogeneity but are often complicated, time consuming, and lack statistical power. We present a highly-generalisable and high-throughput single-molecule assay to rapidly characterise proteins involved in DNA metabolism. The assay exclusively relies on changes in total fluorescence intensity of surface-immobilised DNA templates as a result of DNA synthesis, unwinding or digestion. Combined with an automated data-analysis pipeline, our method provides enzymatic activity data of thousands of molecules in less than an hour. We demonstrate our method by characterising three fundamentally different enzyme activities: digestion by the phage λ exonuclease, synthesis by the phage Phi29 polymerase, and unwinding by the E. coli UvrD helicase. We observe the previously unknown activity of the UvrD helicase to remove neutravidin bound to 5'-, but not 3'-ends of biotinylated DNA.


Assuntos
DNA Helicases , DNA , DNA/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Cinética
6.
Nucleic Acids Res ; 51(7): 3307-3326, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36938885

RESUMO

Genome duplication occurs while the template DNA is bound by numerous DNA-binding proteins. Each of these proteins act as potential roadblocks to the replication fork and can have deleterious effects on cells. In Escherichia coli, these roadblocks are displaced by the accessory helicase Rep, a DNA translocase and helicase that interacts with the replisome. The mechanistic details underlying the coordination with replication and roadblock removal by Rep remain poorly understood. Through real-time fluorescence imaging of the DNA produced by individual E. coli replisomes and the simultaneous visualization of fluorescently-labeled Rep, we show that Rep continually surveils elongating replisomes. We found that this association of Rep with the replisome is stochastic and occurs independently of whether the fork is stalled or not. Further, we visualize the efficient rescue of stalled replication forks by directly imaging individual Rep molecules as they remove a model protein roadblock, dCas9, from the template DNA. Using roadblocks of varying DNA-binding stabilities, we conclude that continuation of synthesis is the rate-limiting step of stalled replication rescue.


Assuntos
DNA Helicases , Proteínas de Escherichia coli , DNA/metabolismo , DNA Helicases/química , Replicação do DNA , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química
7.
Nucleic Acids Res ; 51(11): 5714-5742, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37125644

RESUMO

The bacterial RecF, RecO, and RecR proteins are an epistasis group involved in loading RecA protein into post-replication gaps. However, the targeting mechanism that brings these proteins to appropriate gaps is unclear. Here, we propose that targeting may involve a direct interaction between RecF and DnaN. In vivo, RecF is commonly found at the replication fork. Over-expression of RecF, but not RecO or a RecF ATPase mutant, is extremely toxic to cells. We provide evidence that the molecular basis of the toxicity lies in replisome destabilization. RecF over-expression leads to loss of genomic replisomes, increased recombination associated with post-replication gaps, increased plasmid loss, and SOS induction. Using three different methods, we document direct interactions of RecF with the DnaN ß-clamp and DnaG primase that may underlie the replisome effects. In a single-molecule rolling-circle replication system in vitro, physiological levels of RecF protein trigger post-replication gap formation. We suggest that the RecF interactions, particularly with DnaN, reflect a functional link between post-replication gap creation and gap processing by RecA. RecF's varied interactions may begin to explain how the RecFOR system is targeted to rare lesion-containing post-replication gaps, avoiding the potentially deleterious RecA loading onto thousands of other gaps created during replication.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
8.
Nucleic Acids Res ; 51(13): 6540-6553, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37254785

RESUMO

Bacteriophage T7 single-stranded DNA-binding protein (gp2.5) binds to and protects transiently exposed regions of single-stranded DNA (ssDNA) while dynamically interacting with other proteins of the replication complex. We directly visualize fluorescently labelled T7 gp2.5 binding to ssDNA at the single-molecule level. Upon binding, T7 gp2.5 reduces the contour length of ssDNA by stacking nucleotides in a force-dependent manner, suggesting T7 gp2.5 suppresses the formation of secondary structure. Next, we investigate the binding dynamics of T7 gp2.5 and a deletion mutant lacking 21 C-terminal residues (gp2.5-Δ21C) under various template tensions. Our results show that the base sequence of the DNA molecule, ssDNA conformation induced by template tension, and the acidic terminal domain from T7 gp2.5 significantly impact on the DNA binding parameters of T7 gp2.5. Moreover, we uncover a unique template-catalyzed recycling behaviour of T7 gp2.5, resulting in an apparent cooperative binding to ssDNA, facilitating efficient spatial redistribution of T7 gp2.5 during the synthesis of successive Okazaki fragments. Overall, our findings reveal an efficient binding mechanism that prevents the formation of secondary structures by enabling T7 gp2.5 to rapidly rebind to nearby exposed ssDNA regions, during lagging strand DNA synthesis.


Assuntos
Bacteriófago T7 , Proteínas Virais , Bacteriófago T7/genética , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Conformação Molecular , Proteínas Virais/metabolismo
9.
Proc Biol Sci ; 291(2016): 20232666, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351808

RESUMO

Wildlife is increasingly exposed to sublethal transient cancer risk factors, including mutagenic substances, which activates their anti-cancer defences, promotes tumourigenesis, and may negatively impact populations. Little is known about how exposure to cancer risk factors impacts the behaviour of wildlife. Here, we investigated the effects of a sublethal, short-term exposure to a carcinogen at environmentally relevant concentrations on the activity patterns of wild Girardia tigrina planaria during a two-phase experiment, consisting of a 7-day exposure to cadmium period followed by a 7-day recovery period. To comprehensively explore the effects of the exposure on activity patterns, we employed the double hierarchical generalized linear model framework which explicitly models residual intraindividual variability in addition to the mean and variance of the population. We found that exposed planaria were less active compared to unexposed individuals and were able to recover to pre-exposure activity levels albeit with a reduced variance in activity at the start of the recovery phase. Planaria showing high activity levels were less predictable with larger daily activity variations and higher residual variance. Thus, the shift in behavioural variability induced by an exposure to a cancer risk factor can be quantified using advanced tools from the field of behavioural ecology. This is required to understand how tumourous processes affect the ecology of species.


Assuntos
Ecologia , Neoplasias , Humanos , Animais , Comportamento Animal , Animais Selvagens , Fatores de Risco
10.
Mol Ecol ; 33(6): e17283, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288572

RESUMO

Avian embryos develop in an egg composition which reflects both maternal condition and the recent environment of their mother. In birds, yolk corticosterone (CORT) influences development by impacting pre- and postnatal growth, as well as nestling stress responses and development. One possible mechanism through which maternal CORT may affect offspring development is via changes to offspring DNA methylation. We sought to investigate this, for the first time in birds, by quantifying the impact of manipulations to maternal CORT on offspring DNA methylation. We non-invasively manipulated plasma CORT concentrations of egg-laying female zebra finches (Taeniopygia castanotis) with an acute dose of CORT administered around the time of ovulation and collected their eggs. We then assessed DNA methylation in the resulting embryonic tissue and in their associated vitelline membrane blood vessels, during early development (5 days after lay), using two established methods - liquid chromatography-mass spectrometry (LC-MS) and methylation-sensitive amplification fragment length polymorphism (MS-AFLP). LC-MS analysis showed that global DNA methylation was lower in embryos from CORT-treated mothers, compared to control embryos. In contrast, blood vessel DNA from eggs from CORT-treated mothers showed global methylation increases, compared to control samples. There was a higher proportion of global DNA methylation in the embryonic DNA of second clutches, compared to first clutches. Locus-specific analyses using MS-AFLP did not reveal a treatment effect. Our results indicate that an acute elevation of maternal CORT around ovulation impacts DNA methylation patterns in their offspring. This could provide a mechanistic understanding of how a mother's experience can affect her offspring's phenotype.


Assuntos
Corticosterona , Passeriformes , Animais , Feminino , Corticosterona/farmacologia , Corticosterona/análise , Metilação de DNA , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA
11.
BMC Cancer ; 24(1): 709, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853244

RESUMO

BACKGROUND: Pancreatic cancer, predominantly characterized by ductal adenocarcinoma (PDAC) accounts for 90% of cases and is the fourth leading cause of cancer-related deaths globally. Its incidence is notably increasing. This poor prognosis is primarily due to late-stage diagnosis (approximately 70% to 80% of patients are diagnosed at an advanced stage), aggressive tumor biology, and low sensitivity to chemotherapy. Consequently, it is crucial to identify and develop a simple, feasible and reproducible blood-based signature (i.e., combination of biomarkers) for early detection of PDAC. METHODS: The PANLIPSY study is a multi-center, non-interventional prospective clinical trial designed to achieve early detection of PDAC with high specificity and sensitivity, using a combinatorial approach in blood samples. These samples are collected from patients with resectable, borderline or locally advanced, and metastatic stage PDAC within the framework of the French Biological and Clinical Database for PDAC cohort (BACAP 2). All partners of the BACAP consortium are eligible to participate. The study will include 215 PDAC patients, plus 25 patients with benign pancreatic conditions from the PAncreatic Disease Cohort of TOuLouse (PACTOL) cohort, and 115 healthy controls, totaling 355 individuals. Circulating biomarkers will be collected in a total volume of 50 mL of blood, divided into one CellSave tube (10 mL), two CELL-FREE DNA BCT® preservative tubes (18 mL), and five EDTA tubes (22 mL in total). Samples preparation will adhere to the guidelines of the European Liquid Biopsy Society (ELBS). A unique feature of the study is the AI-based comparison of these complementary liquid biopsy biomarkers. Main end-points: i) to define a liquid biopsy signature that includes the most relevant circulating biomarkers, ii) to validate the multi-marker panel in an independent cohort of healthy controls and patients, with resectable PDAC, and iii) to establish a unique liquid biopsy biobank for PDAC study. DISCUSSION: The PANLIPSY study is a unique prospective non-interventional clinical trial that brings together liquid biopsy experts. The aim is to develop a biological signature for the early detection of PDAC based on AI-assisted detection of circulating biomarkers in blood samples (CTCs, ctDNA, EVs, circulating immune system, circulating cell-free nucleosomes, proteins, and microbiota). TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06128343 / NCT05824403. Registration dates: June 8,2023 and April 21, 2023.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Detecção Precoce de Câncer , Neoplasias Pancreáticas , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patologia , Detecção Precoce de Câncer/métodos , França , Biópsia Líquida/métodos , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Estudos Prospectivos
12.
Mol Cell ; 64(6): 1035-1047, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27889453

RESUMO

The molecular machinery responsible for DNA replication, the replisome, must efficiently coordinate DNA unwinding with priming and synthesis to complete duplication of both strands. Due to the anti-parallel nature of DNA, the leading strand is copied continuously, while the lagging strand is produced by repeated cycles of priming, DNA looping, and Okazaki-fragment synthesis. Here, we report a multidimensional single-molecule approach to visualize this coordination in the bacteriophage T7 replisome by simultaneously monitoring the kinetics of loop growth and leading-strand synthesis. We show that loops in the lagging strand predominantly occur during priming and only infrequently support subsequent Okazaki-fragment synthesis. Fluorescence imaging reveals polymerases remaining bound to the lagging strand behind the replication fork, consistent with Okazaki-fragment synthesis behind and independent of the replication complex. Individual replisomes display both looping and pausing during priming, reconciling divergent models for the regulation of primer synthesis and revealing an underlying plasticity in replisome operation.


Assuntos
Bacteriófago T7/genética , DNA Primase/genética , Replicação do DNA , DNA Viral/genética , Bacteriófago T7/metabolismo , Bacteriófago T7/ultraestrutura , DNA/biossíntese , DNA/genética , DNA Primase/metabolismo , DNA Primase/ultraestrutura , DNA Viral/metabolismo , DNA Viral/ultraestrutura , Cinética , Imagem Individual de Molécula/métodos , Imagem com Lapso de Tempo/métodos
13.
J Water Health ; 22(5): 878-886, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822466

RESUMO

The health district of Sakassou is one of the 83 health districts in Côte d'Ivoire, located in a zone with very high malarial transmission rates, with an incidence rate of ≥40% Therefore, to guide vector control methods more effectively, it was crucial to have a good understanding of the vectors in the area. This study aimed to determine the level of malarial transmission during the dry season in Sakassou, Côte d'Ivoire. Female Anopheles mosquitoes were sampled using human landing catches (HLCs) and pyrethrum spraying catches (PSCs). The larvae were collected using the 'dipping' method. A total of 10,875 adult female mosquitoes of Anopheles gambiae were collected. The PCR analysis revealed that all individuals were Anopheles coluzzii. The geographical distribution of potential breeding sites of Anopheles showed the presence of An. coluzzii in all the wetlands of the city of Sakassou. During the dry season, the human-biting rate of An. coluzzii was 139.1 bites/person/night. An exophagic trend was displayed by an adult female of An. coluzzii. The entomological inoculation rate during the dry season was 1.49 infectious bites/person/night. This study demonstrated that An. coluzzii was the main vector of malarial transmission in Sakassou, and the intensity of transmission remains high throughout the dry season.


Assuntos
Anopheles , Malária , Mosquitos Vetores , Estações do Ano , Animais , Anopheles/fisiologia , Anopheles/parasitologia , Côte d'Ivoire/epidemiologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/parasitologia , Malária/transmissão , Malária/epidemiologia , Feminino , Humanos , Oryza/parasitologia , Irrigação Agrícola , Controle de Mosquitos
14.
Nucleic Acids Res ; 50(10): 5688-5712, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641110

RESUMO

Elongation by RNA polymerase is dynamically modulated by accessory factors. The transcription-repair coupling factor (TRCF) recognizes paused/stalled RNAPs and either rescues transcription or initiates transcription termination. Precisely how TRCFs choose to execute either outcome remains unclear. With Escherichia coli as a model, we used single-molecule assays to study dynamic modulation of elongation by Mfd, the bacterial TRCF. We found that nucleotide-bound Mfd converts the elongation complex (EC) into a catalytically poised state, presenting the EC with an opportunity to restart transcription. After long-lived residence in this catalytically poised state, ATP hydrolysis by Mfd remodels the EC through an irreversible process leading to loss of the RNA transcript. Further, biophysical studies revealed that the motor domain of Mfd binds and partially melts DNA containing a template strand overhang. The results explain pathway choice determining the fate of the EC and provide a molecular mechanism for transcription modulation by TRCF.


Assuntos
Proteínas de Bactérias , Reparo do DNA , Escherichia coli , Fatores de Transcrição , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
Nucleic Acids Res ; 50(12): 6854-6869, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35736210

RESUMO

Homologs of the mutagenic Escherichia coli DNA polymerase V (pol V) are encoded by numerous pathogens and mobile elements. We have used Rum pol (RumA'2B), from the integrative conjugative element (ICE), R391, as a model mobile element-encoded polymerase (MEPol). The highly mutagenic Rum pol is transferred horizontally into a variety of recipient cells, including many pathogens. Moving between species, it is unclear if Rum pol can function on its own or requires activation by host factors. Here, we show that Rum pol biochemical activity requires the formation of a physical mutasomal complex, Rum Mut, containing RumA'2B-RecA-ATP, with RecA being donated by each recipient bacteria. For R391, Rum Mut specific activities in vitro and mutagenesis rates in vivo depend on the phylogenetic distance of host-cell RecA from E. coli RecA. Rum pol is a highly conserved and effective mobile catalyst of rapid evolution, with the potential to generate a broad mutational landscape that could serve to ensure bacterial adaptation in antibiotic-rich environments leading to the establishment of antibiotic resistance.


Assuntos
Escherichia coli , Mutagênicos , Recombinases Rec A , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/metabolismo , Filogenia , Recombinases Rec A/metabolismo
16.
Proc Biol Sci ; 290(2001): 20230940, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37357861

RESUMO

Reproduction is a central activity for all living organisms but is also associated with a diversity of costs that are detrimental for survival. Until recently, the cost of cancer as a selective force has been poorly considered. Considering 191 mammal species, we found cancer mortality was more likely to be detected in species having large, rather than low, litter sizes and long lactation lengths regardless of the placentation types. However, increasing litter size and gestation length are not per se associated with an enhanced cancer mortality risk. Contrary to basic theoretical expectations, the species with the highest cancer mortality were not those with the most invasive (i.e. haemochorial) placentation, but those with a moderately invasive (i.e. endotheliochorial) one. Overall, these results suggest that (i) high reproductive efforts favour oncogenic processes' dynamics, presumably because of trade-offs between allocation in reproduction effort and anti-cancer defences, (ii) cancer defence mechanisms in animals are most often adjusted to align reproductive lifespan, and (iii) malignant cells co-opt existing molecular and physiological pathways for placentation, but species with the most invasive placentation have also selected for potent barriers against lethal cancers. This work suggests that the logic of Peto's paradox seems to be applicable to other traits that promote tumorigenesis.


Assuntos
Neoplasias , Placentação , Gravidez , Animais , Feminino , Placentação/fisiologia , Tamanho da Ninhada de Vivíparos , Lactação/fisiologia , Reprodução/fisiologia , Mamíferos , Neoplasias/etiologia
17.
Nat Methods ; 17(7): 741-748, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483335

RESUMO

Two-photon microscopy is widely used to investigate brain function across multiple spatial scales. However, measurements of neural activity are compromised by brain movement in behaving animals. Brain motion-induced artifacts are typically corrected using post hoc processing of two-dimensional images, but this approach is slow and does not correct for axial movements. Moreover, the deleterious effects of brain movement on high-speed imaging of small regions of interest and photostimulation cannot be corrected post hoc. To address this problem, we combined random-access three-dimensional (3D) laser scanning using an acousto-optic lens and rapid closed-loop field programmable gate array processing to track 3D brain movement and correct motion artifacts in real time at up to 1 kHz. Our recordings from synapses, dendrites and large neuronal populations in behaving mice and zebrafish demonstrate real-time movement-corrected 3D two-photon imaging with submicrometer precision.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Movimento , Peixe-Zebra
18.
J Evol Biol ; 36(12): 1731-1744, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955420

RESUMO

There is growing empirical evidence that animal hosts actively control the density of their mutualistic symbionts according to their requirements. Such active regulation can be facilitated by compartmentalization of symbionts within host tissues, which confers a high degree of control of the symbiosis to the host. Here, we build a general theoretical framework to predict the underlying ecological drivers and evolutionary consequences of host-controlled endosymbiont density regulation for a mutually obligate association between a host and a compartmentalized, vertically transmitted symbiont. Building on the assumption that the costs and benefits of hosting a symbiont population increase with symbiont density, we use state-dependent dynamic programming to determine an optimal strategy for the host, i.e., that which maximizes host fitness, when regulating the density of symbionts. Simulations of active host-controlled regulation governed by the optimal strategy predict that the density of the symbiont should converge to a constant level during host development, and following perturbation. However, a similar trend also emerges from alternative strategies of symbiont regulation. The strategy which maximizes host fitness also promotes symbiont fitness compared to alternative strategies, suggesting that active host-controlled regulation of symbiont density could be adaptive for the symbiont as well as the host. Adaptation of the framework allowed the dynamics of symbiont density to be predicted for other host-symbiont ecologies, such as for non-essential symbionts, demonstrating the versatility of this modelling approach.


Assuntos
Evolução Biológica , Simbiose , Animais , Simbiose/fisiologia , Modelos Teóricos
19.
Environ Health ; 22(1): 32, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36998068

RESUMO

BACKGROUND: Ozone as an air pollutant is gradually becoming a threat to people's health. However, the effect of ozone exposure on risk of developing diabetes, a fast-growing global metabolic disease, remains controversial. OBJECTIVE: To evaluate the impact of ambient ozone exposure on the incidence rate of type 1, type 2 and gestational diabetes mellitus. METHOD: We systematically searched PubMed, Web of Science, and Cochrane Library databases before July 9, 2022, to determine relevant literature. Data were extracted after quality evaluation according to the Newcastle Ottawa Scale (NOS) and the agency for healthcare research and quality (AHRQ) standards, and a meta-analysis was used to evaluate the correlation between ozone exposure and type 1 diabetes mellitus (T1D), type 2 diabetes mellitus (T2D), and gestational diabetes mellitus (GDM). The heterogeneity test, sensitivity analysis, and publication bias were performed using Stata 16.0. RESULTS: Our search identified 667 studies from three databases, 19 of which were included in our analysis after removing duplicate and ineligible studies. Among the remaining studies, three were on T1D, five were on T2D, and eleven were on GDM. The result showed that ozone exposure was positively correlated with T2D [effect size (ES) = 1.06, 95% CI: 1.02, 1.11] and GDM [pooled odds ratio (OR) = 1.01, 95% CI: 1.00, 1.03]. Subgroup analysis demonstrated that ozone exposure in the first trimester of pregnancy might raise the risk of GDM. However, no significant association was observed between ozone exposure and T1D. CONCLUSION: Long-term exposure to ozone may increase the risk of T2D, and daily ozone exposure during pregnancy was a hazard factor for developing GDM. Decreasing ambient ozone pollution may reduce the burden of both diseases.


Assuntos
Poluição do Ar , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Ozônio , Feminino , Humanos , Gravidez , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Gestacional/induzido quimicamente , Diabetes Gestacional/epidemiologia , Ozônio/efeitos adversos , Ozônio/análise , Material Particulado/análise
20.
Tob Control ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263783

RESUMO

Starting in the 1970s, individuals, businesses and the public have increasingly benefited from policies prohibiting smoking indoors, saving thousands of lives and billions of dollars in healthcare expenditures. Smokefree policies to protect against secondhand smoke exposure, however, do not fully protect the public from the persistent and toxic chemical residues from tobacco smoke (also known as thirdhand smoke) that linger in indoor environments for years after smoking stops. Nor do these policies address the economic costs that individuals, businesses and the public bear in their attempts to remediate this toxic residue. We discuss policy-relevant differences between secondhand smoke and thirdhand smoke exposure: persistent pollutant reservoirs, pollutant transport, routes of exposure, the time gap between initial cause and effect, and remediation and disposal. We examine four policy considerations to better protect the public from involuntary exposure to tobacco smoke pollutants from all sources. We call for (a) redefining smokefree as free of tobacco smoke pollutants from secondhand and thirdhand smoke; (b) eliminating exemptions to comprehensive smoking bans; (c) identifying indoor environments with significant thirdhand smoke reservoirs; and (d) remediating thirdhand smoke. We use the case of California as an example of how secondhand smoke-protective laws may be strengthened to encompass thirdhand smoke protections. The health risks and economic costs of thirdhand smoke require that smokefree policies, environmental protections, real estate and rental disclosure policies, tenant protections, and consumer protection laws be strengthened to ensure that the public is fully protected from and informed about the risks of thirdhand smoke exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA