Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 22(12): 741-757, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34711956

RESUMO

The hand endows us with unparalleled precision and versatility in our interactions with objects, from mundane activities such as grasping to extraordinary ones such as virtuoso pianism. The complex anatomy of the human hand combined with expansive and specialized neuronal control circuits allows a wide range of precise manual behaviours. To support these behaviours, an exquisite sensory apparatus, spanning the modalities of touch and proprioception, conveys detailed and timely information about our interactions with objects and about the objects themselves. The study of manual dexterity provides a unique lens into the sensorimotor mechanisms that endow the nervous system with the ability to flexibly generate complex behaviour.


Assuntos
Mãos/anatomia & histologia , Mãos/fisiologia , Destreza Motora/fisiologia , Humanos , Propriocepção/fisiologia , Percepção do Tato/fisiologia
2.
EMBO Rep ; 24(8): e56754, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37278352

RESUMO

The use of beneficial microbes to mitigate drought stress tolerance of plants is of great potential albeit little understood. We show here that a root endophytic desert bacterium, Pseudomonas argentinensis strain SA190, enhances drought stress tolerance in Arabidopsis. Transcriptome and genetic analysis demonstrate that SA190-induced root morphogenesis and gene expression is mediated via the plant abscisic acid (ABA) pathway. Moreover, we demonstrate that SA190 primes the promoters of target genes in an epigenetic ABA-dependent manner. Application of SA190 priming on crops is demonstrated for alfalfa, showing enhanced performance under drought conditions. In summary, a single beneficial root bacterial strain can help plants to resist drought conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Resistência à Seca , Arabidopsis/genética , Arabidopsis/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética
3.
Plant Cell ; 33(3): 714-734, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955482

RESUMO

Glucosylation modulates the biological activity of small molecules and frequently leads to their inactivation. The Arabidopsis thaliana glucosyltransferase UGT76B1 is involved in conjugating the stress hormone salicylic acid (SA) as well as isoleucic acid (ILA). Here, we show that UGT76B1 also glucosylates N-hydroxypipecolic acid (NHP), which is synthesized by FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1) and activates systemic acquired resistance (SAR). Upon pathogen attack, Arabidopsis leaves generate two distinct NHP hexose conjugates, NHP-O-ß-glucoside and NHP glucose ester, whereupon only NHP-O-ß-glucoside formation requires a functional SA pathway. The ugt76b1 mutants specifically fail to generate the NHP-O-ß-glucoside, and recombinant UGT76B1 synthesizes NHP-O-ß-glucoside in vitro in competition with SA and ILA. The loss of UGT76B1 elevates the endogenous levels of NHP, SA, and ILA and establishes a constitutive SAR-like immune status. Introgression of the fmo1 mutant lacking NHP biosynthesis into the ugt76b1 background abolishes this SAR-like resistance. Moreover, overexpression of UGT76B1 in Arabidopsis shifts the NHP and SA pools toward O-ß-glucoside formation and abrogates pathogen-induced SAR. Our results further indicate that NHP-triggered immunity is SA-dependent and relies on UGT76B1 as a common metabolic hub. Thereby, UGT76B1-mediated glucosylation controls the levels of active NHP, SA, and ILA in concert to balance the plant immune status.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicosiltransferases/metabolismo , Ácidos Pipecólicos/metabolismo , Imunidade Vegetal/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glicosiltransferases/genética , Imunidade Vegetal/genética
4.
Plant Cell Rep ; 43(6): 149, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780624

RESUMO

KEY MESSAGE: The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Glucosiltransferases , Ácido Salicílico , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Imunidade Vegetal/genética , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Ácidos Pipecólicos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo
5.
Curr Issues Mol Biol ; 45(12): 9378-9389, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132434

RESUMO

Heat shock proteins (HSPs), a family of proteins that support cellular proteostasis and perform a protective function under various stress conditions, such as high temperature, intoxication, inflammation, or tissue hypoxia, constitute a promising group of possible biochemical markers for obesity and cardiovascular diseases. HSP27 is involved in essential cellular processes occurring in conditions of obesity and its cardiometabolic complications; it has protective properties, and its secretion may indicate a cellular response to stress. HSP40 plays a controversial role in the pathogenesis of obesity. HSP60 is involved in various pathological processes of the cardiovascular, immune, excretory, and nervous systems and is associated with obesity and concomitant diseases. The hypersecretion of HSP60 is associated with poor prognosis; hence, this protein may become a target for further research on obesity and its cardiovascular complications. According to most studies, intracellular HSP70 is an obesity-promoting factor, whereas extracellular HSP70 exhibited inconsistent dynamics across different patient groups and diagnoses. HSPs are involved in the pathogenesis of cardiovascular pathology. However, in the context of cardiovascular and metabolic pathology, these proteins require further investigation.

6.
J Exp Bot ; 74(10): 3033-3046, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36905226

RESUMO

Defense responses in plants are based on complex biochemical processes. Systemic acquired resistance (SAR) helps to fight infections by (hemi-)biotrophic pathogens. One important signaling molecule in SAR is pipecolic acid (Pip), accumulation of which is dependent on the aminotransferase ALD1 in Arabidopsis. While exogenous Pip primes defense responses in the monocotyledonous cereal crop barley (Hordeum vulgare), it is currently unclear if endogenous Pip plays a role in disease resistance in monocots. Here, we generated barley ald1 mutants using CRISPR/Cas9, and assessed their capacity to mount SAR. Endogenous Pip levels were reduced after infection of the ald1 mutant, and this altered systemic defense against the fungus Blumeria graminis f. sp. hordei. Furthermore, Hvald1 plants did not emit nonanal, one of the key volatile compounds that are normally emitted by barley plants after the activation of SAR. This resulted in the inability of neighboring plants to perceive and/or respond to airborne cues and prepare for an upcoming infection, although HvALD1 was not required in the receiver plants to mediate the response. Our results highlight the crucial role of endogenous HvALD1 and Pip for SAR, and associate Pip, in particular together with nonanal, with plant-to-plant defense propagation in the monocot crop barley.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Hordeum/genética , Hordeum/microbiologia , Imunidade Vegetal/genética , Doenças das Plantas/microbiologia
7.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176153

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions worldwide. Moreover, the prevalence of this liver disease is expected to increase rapidly in the near future, aligning with the rise in obesity and the aging of the population. The pathogenesis of NAFLD is considered to be complex and to include the interaction between genetic, metabolic, inflammatory, and environmental factors. It is now well documented that NAFLD is linked to the other conditions common to insulin resistance, such as abnormal lipid levels, metabolic syndrome, and type 2 diabetes mellitus. Additionally, it is considered that the insulin resistance may be one of the main mechanisms determining the disturbances in both bone tissue metabolism and skeletal muscles quality and functions in patients with NAFLD. To date, the association between NAFLD and osteoporosis has been described in several studies, though it worth noting that most of them included postmenopausal women or elderly patients and originated from Asia. However, taking into account the health and economic burdens of NAFLD, and the increasing prevalence of obesity in children and adolescents worldwide, further investigation of the relationship between osteopenia, osteoporosis and sarcopenia in NAFLD, including in young and middle-aged patients, is of great importance. In addition, this will help to justify active screening and surveillance of osteopenia and osteoporosis in patients with NAFLD. In this review, we will discuss various pathophysiological mechanisms and possible biologically active molecules that may interplay between NAFLD and bone tissue metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Osteoporose , Obesidade Infantil , Pessoa de Meia-Idade , Adolescente , Criança , Humanos , Feminino , Idoso , Hepatopatia Gordurosa não Alcoólica/metabolismo , Diabetes Mellitus Tipo 2/complicações , Obesidade Infantil/complicações , Osso e Ossos/metabolismo , Osteoporose/etiologia , Osteoporose/complicações , Fatores de Risco
8.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445916

RESUMO

Antibacterial chitosan films, versatile and eco-friendly materials, have garnered significant attention in both the food industry and medicine due to their unique properties, including biodegradability, biocompatibility, and antimicrobial activity. This review delves into the various types of chitosan films and their distinct applications. The categories of films discussed span from pure chitosan films to those enhanced with additives such as metal nanoparticles, metal oxide nanoparticles, graphene, fullerene and its derivatives, and plant extracts. Each type of film is examined in terms of its synthesis methods and unique properties, establishing a clear understanding of its potential utility. In the food industry, these films have shown promise in extending shelf life and maintaining food quality. In the medical field, they have been utilized for wound dressings, drug delivery systems, and as antibacterial coatings for medical devices. The review further suggests that the incorporation of different additives can significantly enhance the antibacterial properties of chitosan films. While the potential of antibacterial chitosan films is vast, the review underscores the need for future research focused on optimizing synthesis methods, understanding structure-property relationships, and rigorous evaluation of safety, biocompatibility, and long-term stability in real-world applications.


Assuntos
Quitosana , Nanopartículas Metálicas , Quitosana/farmacologia , Antibacterianos/farmacologia , Óxidos , Filmes Cinematográficos , Embalagem de Alimentos/métodos
9.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894951

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is considered the most common chronic liver disease worldwide, affecting nearly 25% of the global adult population. Increasing evidence suggests that functional and compositional changes in the gut microbiota may contribute to the development and promote the progression of NAFLD. 16S rRNA gene next-generation sequencing is widely used to determine specific features of the NAFLD microbiome, but a complex system such as the gut microbiota requires a comprehensive approach. We used three different approaches: MALDI-TOF-MS of bacterial cultures, qPCR, and 16S NGS sequencing, as well as a wide variety of statistical methods to assess the differences in gut microbiota composition between NAFLD patients without significant fibrosis and the control group. The listed methods showed enrichment in Collinsella sp. and Oscillospiraceae for the control samples and enrichment in Lachnospiraceae (and in particular Dorea sp.) and Veillonellaceae in NAFLD. The families, Bifidobacteriaceae, Lactobacillaceae, and Enterococcaceae (particularly Enterococcus faecium and Enterococcus faecalis), were also found to be important taxa for NAFLD microbiome evaluation. Considering individual method observations, an increase in Candida krusei and a decrease in Bacteroides uniformis for NAFLD patients were detected using MALDI-TOF-MS. An increase in Gracilibacteraceae, Chitinophagaceae, Pirellulaceae, Erysipelatoclostridiaceae, Muribaculaceae, and Comamonadaceae, and a decrease in Acidaminococcaceae in NAFLD were observed with 16S NGS, and enrichment in Fusobacterium nucleatum was shown using qPCR analysis. These findings confirm that NAFLD is associated with changes in gut microbiota composition. Further investigations are required to determine the cause-and-effect relationships and the impact of microbiota-derived compounds on the development and progression of NAFLD.


Assuntos
Microbioma Gastrointestinal , Microbiota , Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Fibrose , Bacteroidetes , Fígado/patologia
10.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771079

RESUMO

Microorganisms, fermentation processes, and the resultant metabolic products are a key driving force in biotechnology and, in particular, in food biotechnology. The quantity and/or quality of final manufactured food products are directly related to the efficiency of the metabolic processes of producer microorganisms. Food BioTech companies are naturally interested in increasing the productivity of their biotechnological production lines. This could be achieved via either indirect or direct influence on the fundamental mechanisms governing biological processes occurring in microbial cells. This review considers an approach to improve the efficiency of producer microorganisms through the use of several types of substances or complexes affecting the metabolic processes of microbial producers that are of interest for food biotechnology, particularly fermented milk products. A classification of these supplements will be given, depending on their chemical nature (poly- and oligosaccharides; poly- and oligopeptides, individual amino acids; miscellaneous substances, including vitamins and other organic compounds, minerals, and multicomponent supplements), and the approved results of their application will be comprehensively surveyed.


Assuntos
Biotecnologia , Vitaminas , Suplementos Nutricionais , Fermentação , Vitamina A
11.
J Neurophysiol ; 127(6): 1669-1678, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642848

RESUMO

Nonhuman primates, especially rhesus macaques, have been a dominant model to study sensorimotor control of the upper limbs. Indeed, human and macaques have similar hands and homologous neural circuits to mediate manual behavior. However, few studies have systematically and quantitatively compared the manual behaviors of the two species. Such comparison is critical for assessing the validity of using the macaque sensorimotor system as a model of its human counterpart. In this study, we systematically compared the prehensile behaviors of humans and rhesus macaques using an identical experimental setup. We found human and macaque prehension kinematics to be generally similar with a few subtle differences. Although the structure of the preshaping hand postures is similar in humans and macaques, human postures are more object-specific and human joints are less intercorrelated. Conversely, monkeys demonstrate more stereotypical preshaping behaviors that are common across all objects and more variability in their postures across repeated presentations of the same object. Despite these subtle differences in manual behavior between humans and monkeys, our results bolster the use of the macaque model to understand the neural mechanisms of manual dexterity in humans.NEW & NOTEWORTHY Macaques have been a dominant animal model to study the neural mechanisms of human dexterity because they exhibit complex manual behavior. We show that the kinematics of prehension, a critical dexterous behavior, are largely similar in humans and macaques. However, human preshaping postures are more object-specific and the movement of human digits is less correlated with each other. The thumb, index, and wrist are major drivers of these interspecies differences.


Assuntos
Força da Mão , Movimento , Animais , Fenômenos Biomecânicos , Mãos , Humanos , Macaca mulatta
12.
Plant Cell ; 31(2): 346-367, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30705134

RESUMO

Throughout the temperate zones, plants face combined drought and heat spells in increasing frequency and intensity. Here, we compared periodic (intermittent, i.e., high-frequency) versus chronic (continuous, i.e., high-intensity) drought-heat stress scenarios in gray poplar (Populus× canescens) plants for phenotypic and transcriptomic effects during stress and after recovery. Photosynthetic productivity after stress recovery exceeded the performance of poplar trees without stress experience. We analyzed the molecular basis of this stress-related memory phenotype and investigated gene expression responses across five major tree compartments including organs and wood tissues. For each of these tissue samples, transcriptomic changes induced by the two stress scenarios were highly similar during the stress phase but strikingly divergent after recovery. Characteristic molecular response patterns were found across tissues but involved different genes in each tissue. Only a small fraction of genes showed similar stress and recovery expression profiles across all tissues, including type 2C protein phosphatases, the LATE EMBRYOGENESIS ABUNDANT PROTEIN4-5 genes, and homologs of the Arabidopsis (Arabidopsis thaliana) transcription factor HOMEOBOX7. Analysis of the predicted transcription factor regulatory networks for these genes suggested that a complex interplay of common and tissue-specific components contributes to the coordination of post-recovery responses to stress in woody plants.


Assuntos
Proteínas de Plantas/metabolismo , Populus/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Populus/genética , Estresse Fisiológico
13.
BMC Health Serv Res ; 22(1): 214, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177039

RESUMO

BACKGROUND: Children with neurodisability (ND) represent a significant population with a demonstrated need for coordinated support. Patient navigation has a primary focus on: facilitating access to and connection amongst fragmented systems; as well as the provision of educational and emotional support. Given the distinct needs of children with ND and their families, programs built upon such core concepts could be of great benefit. The diversity of terminology encompassing navigation-related concepts and activities (e.g., care coordination, case management, family support), however, presents challenges to both practice and research. This scoping review examined the terminology and descriptions provided within published articles on navigation-type models for children with ND and their families. METHODS: The scoping review was conducted according to the Joanna Briggs Institute methodology. A preliminary search was completed on PubMed (NCBI), MEDLINE (Ovid) and CINAHL (EBSCO) to identify initial search terms, upon which a full search strategy was developed and executed in MEDLINE (Ovid) and CINAHL (EBSCO). After screening records according to our inclusion and exclusion criteria, a full-text review of relevant articles was conducted and data extracted using a researcher-developed tool. Under close supervision by the research team, study selection was primarily performed by one author. RESULTS: Of the 2597 papers identified, 33 were included in the final review. From the included papers, a total of 49 terms were extracted, 20 of which were unique. Across the diversity of terminology observed, articles provided detailed and rich descriptions characterized by four central domains, namely: (i) what navigation-related resources, supports and services aim to facilitate and (ii) provide; (iii) descriptions of their intended outcomes; as well as (iv) guiding principles. CONCLUSIONS: This scoping review addresses a gap in our knowledge related to the specification of patient navigation and related supports as applied to the specific context of children with ND and their families. Given the particular needs of this population, we propose an empirically-informed integrative model that synthesizes the findings from this scoping review. We suggest that this framework can be used as a guide to the mindful characterization of how supports aiming to connect children and families to needed service are termed and described within future research and in practice.


Assuntos
Pessoas com Deficiência , Navegação de Pacientes , Criança , Humanos , Grupos Populacionais
14.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557998

RESUMO

Ciprofloxacin is one of the most effective antibiotics, but it is characterized by a range of side effects. Elaboration of drug-releasing systems which allow to diminish toxicity of ciprofloxacin is a challenging task in medicinal chemistry. The current study is focused on development of new ciprofloxacin releasing systems (CRS). We found that ultrasound efficiently promotes N,N'-dicyclohexyl carbodiimide-mediated coupling between COOH and NH2 functionalities in water. This was used for conjugation of ciprofloxacin to chitosan. The obtained ciprofloxacin/chitosan conjugates are capable of forming their self-assembled nanoparticles (SANPs) in aqueous medium. The SANPs can be additionally loaded by ciprofloxacin to form new CRS. The CRS demonstrated high loading and encapsulation efficiency and they are characterized by extended release profile (20 h). The elaborated CRS were tested in vivo in rats. The in vivo antibacterial effect of the CRS exceeded that of the starting ciprofloxacin. Moreover, the in vivo acute and subacute toxicity of the nanoparticles was almost identical to that of the chitosan, which is considered as the non-toxic biopolymer.


Assuntos
Quitosana , Nanopartículas , Ratos , Animais , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Quitosana/farmacologia , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Liberação Controlada de Fármacos , Química Farmacêutica , Nanopartículas/química
15.
Biophys J ; 120(13): 2657-2664, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34087217

RESUMO

The question of how much information the photoplethysmogram (PPG) signal contains on the autonomic regulation of blood pressure (BP) remains unsolved. This study aims to compare the low-frequency (LF) and high-frequency components of PPG and BP and assess their correlation with oscillations in interbeat (RR) intervals at similar frequencies. The PPG signal from the distal phalanx of the right index finger recorded using a reflective PPG sensor at green light, the BP signal from the left hand recorded using a Finometer, and RR intervals were analyzed. These signals were simultaneously recorded within 15 min in a supine resting condition in 17 healthy subjects (12 males and 5 females) aged 33 ± 9 years (mean ± SD). The study revealed the high coherence of LF components of PPG and BP with the LF component of RR intervals. The high-frequency components of these signals had low coherence. The analysis of the signal instantaneous phases revealed the presence of high-phase coherence between the LF components of PPG and BP. It is shown that the LF component of PPG is determined not only by local myogenic activity but also reflects the processes of autonomic control of BP.


Assuntos
Fotopletismografia , Pressão Sanguínea , Feminino , Frequência Cardíaca , Humanos , Masculino
16.
Plant Cell Physiol ; 62(3): 502-514, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-33544865

RESUMO

Plants are constantly exposed to stressful environmental conditions. Plant stress reactions were mainly investigated for single stress factors. However, under natural conditions plants may be simultaneously exposed to different stresses. Responses to combined stresses cannot be predicted from the reactions to the single stresses. Flavonoids accumulate in Arabidopsis thaliana during exposure to UV-A, UV-B or cold, but the interactions of these factors on flavonoid biosynthesis were unknown. We therefore investigated the interaction of UV radiation and cold in regulating the expression of well-characterized stress-regulated genes, and on transcripts and metabolites of the flavonoid biosynthetic pathway in 52 natural Arabidopsis accessions that differ widely in their freezing tolerance. The data revealed interactions of cold and UV on the regulation of stress-related and flavonoid biosynthesis genes, and on flavonoid composition. In many cases, plant reactions to a combination of cold and UV were unique under combined stress and not predictable from the responses to the single stresses. Strikingly, all correlations between expression levels of flavonoid biosynthesis genes and flavonol levels were abolished by UV-B exposure. Similarly, correlations between transcript levels of flavonoid biosynthesis genes or flavonoid contents, and freezing tolerance were lost in the presence of UV radiation, while correlations with the expression levels of cold-regulated genes largely persisted. This may indicate different molecular cold acclimation responses in the presence or absence of UV radiation.


Assuntos
Arabidopsis/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Variação Genética/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Temperatura Baixa , Congelamento , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Estresse Fisiológico , Raios Ultravioleta
17.
BMC Cardiovasc Disord ; 21(1): 246, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011280

RESUMO

INTRODUCTION: Structural and functional changes of the vascular wall in women occur already at the very early stages of reproductive aging. An emergence of applanation tonometry made it possible to evaluate arterial stiffness and central hemodynamic parameters non-invasively, which considerably expanded the information that had been provided previously by invasive methods used for studying these parameters during cardiac catheterization. Whereas a few studies have assessed central aortic pressure (CAP) parameters and reflected pulse wave in women at different phases of their reproductive aging, none investigated the daily profile of CAP and reflected pulse wave parameters in women undergoing different stages of the menopause. BACKGROUND: assessment of the daily variability in CAP and daily profile of amplification and augmentation of pulse blood pressure (PBP) in women at different menopause phases. METHODS: The study involved 384 climacteric women. The first group included 168 women undergoing perimenopause, the second group comprised of 216 women in their early postmenopausal stage. A 24-h blood pressure (BP) monitoring in the brachial artery and aorta (BPLab® Vasotens® system, Petr Telegin LLC, Russia) was performed via the measurements of the following indicators: systolic blood pressure (SBP), pulse blood pressure (PBP), central aortic systolic pressure (CASP), central aortic pulse pressure (CAPP), aortic augmentation index (AIxao), and pulse pressure amplification (PPA). RESULTS: When investigating PPA values in the brachial artery and aorta, we detected smaller amplification and higher aortic augmentation index at night than in daytime, which reflected a disproportionately higher CAP level during night hours. This pattern was more pronounced in postmenopausal women. We calculated the logistic regression equation (adjusted R2 = 0.49, log-likelihood = - 50.3, chi-square (19) = 97.6, p < 0.001), in which dependent variable was represented by the menopausal status, whereas body mass index with all indicators of a 24-h BP monitoring represented independent variables. In this model, two indicators (body mass index and AIxao) were, independently of each other, associated significantly with the menopause phases. Differences among women at various climacteric phases in terms of remaining indicators of a 24-h BP monitoring, apparently, matched the differences in their body mass index values. CONCLUSION: Rising CAP, in combination with declining PPA and augmenting reflected pulse wave amplitude, may be associated with an increased risk of cardiovascular complications.


Assuntos
Aorta/fisiopatologia , Pressão Arterial , Monitorização Ambulatorial da Pressão Arterial , Artéria Braquial/fisiopatologia , Hipertensão/diagnóstico , Menopausa , Análise de Onda de Pulso , Rigidez Vascular , Anti-Hipertensivos/uso terapêutico , Pressão Arterial/efeitos dos fármacos , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Pessoa de Meia-Idade , Perimenopausa , Pós-Menopausa , Valor Preditivo dos Testes , Medição de Risco , Fatores de Tempo
18.
Parasitol Res ; 120(6): 2017-2030, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33772348

RESUMO

The genetic diversity of Syphacia nematodes (intestinal parasites of rodents) was studied in the hybrid zone of two sister species of common voles, Microtus arvalis and Microtus obscurus, in the Oka River valley, east of Moscow. Syphacia nematodes of other rodent species (Microtus rossiaemeridionalis, Alexandromys oeconomus, Sylvaemus uralensis, and Apodemus agrarius) that inhabit the area were also studied. Phylogenetic trees for the studied nematodes were inferred from the analysis of nuclear ITS1+5.8S+ITS2, LSU rDNA, and mitochondrial CO1 gene partial sequences. Syphacia nematodes of the studied area form three well-defined clades in the phylogenetic tree of this genus. Morphological analysis revealed similarities between the obtained sequences with those of known Syphacia species from the GenBank database, which enabled identifying these three clades up to the species level: S. montana, S. agraria, and S. frederici. Russian haplotypes of Syphacia are different from West European and East Asian haplotypes with pronounced genetic distances. A high level of specificity was reported for two of these three species (S. frederici, only in Sylvaemus uralensis; S. agraria, only in Apodemus agrarius). S. montana was found in different species of voles. Remarkably, S. montana specimens from M. arvalis and M. obscurus were genetically uniform, while S. montana, specimens from hybrids between these two species formed a separate clade distant from those originating from non-hybridised hosts.


Assuntos
Variação Genética , Oxyuroidea/genética , Doenças dos Roedores/parasitologia , Roedores/genética , Animais , DNA Ribossômico/genética , Hibridização Genética , Oxyuroidea/classificação , Filogenia , Federação Russa , Especificidade da Espécie
19.
Artigo em Inglês | MEDLINE | ID: mdl-31907186

RESUMO

High rates of artemisinin-based combination therapy (ACT) failures in the treatment of Plasmodium falciparum malaria in Southeast Asia have led to triple-drug strategies to extend the useful life of ACTs. In this study, we determined whether methylene blue [MB; 3,7-bis(dimethylamino)phenothiazin-5-ium chloride hydrate] alters the pharmacokinetics of artesunate-amodiaquine (ASAQ) and enhances the ex vivo antimalarial activity of ASAQ. In an open-label, randomized crossover design, a single oral dose of ASAQ (200 mg AS/540 mg AQ) alone or with MB (325 mg) was administered to 15 healthy Vietnamese volunteers. Serial blood samples were collected up to 28 days after dosing. Pharmacokinetic properties of the drugs were determined by noncompartmental analysis. After drug administration, plasma samples from seven participants were assessed for ex vivo antimalarial activity against the artemisinin-sensitive MRA1239 and the artemisinin-resistant MRA1240 P. falciparum lines, in vitro MB significantly increased the mean area under the curve of the active metabolite of AS, dihydroartemisinin (1,246 ± 473 versus 917 ± 405 ng·h/ml, P = 0.009) but did not alter the pharmacokinetics of AQ, AS, or desethylamodiaquine. Comparing the antimalarial activities of the plasma samples from the participants collected up to 48 h after ASAQ plus MB (ASAQ+MB) and ASAQ dosing against the MRA1239 and MRA1240 lines, MB significantly enhanced the blood schizontocidal activity of ASAQ by 2.0-fold and 1.9-fold, respectively. The ring-stage survival assay also confirmed that MB enhanced the ex vivo antimalarial activity of ASAQ against MRA1240 by 2.9-fold to 3.8-fold, suggesting that the triple-drug combination has the potential to treat artemisinin-resistant malaria and for malaria elimination. (This study has been registered in the Australian New Zealand Clinical Trials Registry [https://anzctr.org.au/] under registration number ACTRN12612001298808.).


Assuntos
Amodiaquina/farmacocinética , Antimaláricos/farmacocinética , Artemisininas/farmacocinética , Azul de Metileno/farmacocinética , Adulto , Artesunato/farmacocinética , Estudos Cross-Over , Combinação de Medicamentos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
20.
J Exp Bot ; 71(14): 4258-4270, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32227083

RESUMO

Isoleucic acid (ILA), a branched-chain amino acid-related 2-hydroxycarboxylic acid, occurs ubiquitously in plants. It enhances pathogen resistance and inhibits root growth of Arabidopsis. The salicylic acid (SA) glucosyltransferase UGT76B1 is able to conjugate ILA. Here, we investigate the role of ILA in planta in Arabidopsis and reveal a triad of distinct responses to this small molecule. ILA synergistically co-operates with SA to activate SA-responsive gene expression and resistance in a UGT76B1-dependent manner in agreement with the observed competitive ILA-dependent repression of SA glucosylation by UGT76B1. However, ILA also shows an SA-independent stress response. Nitroblue tetrazolium staining and pharmacological experiments indicate that ILA induces superoxide formation of the wild type and of an SA-deficient (NahG sid2) line. In contrast, the inhibitory effect of ILA on root growth is independent of both SA and superoxide induction. These effects of ILA are specific and distinct from its isomeric compound leucic acid and from the amino acid isoleucine. Leucic acid and isoleucine do not induce expression of defense marker genes or superoxide production, whereas both compounds inhibit root growth. All three responses to ILA are also observed in Brassica napus.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Doenças das Plantas , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA