Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(7): e202300848, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353515

RESUMO

We have recently discovered that ester-stabilized phosphorus ylides, resulting from deprotonation of a phosphonium salt such as [Ph3PCH2COOR], can transfer protons across artificial and biological membranes. To create more effective cationic protonophores, we synthesized similar phosphonium salts with one ((heptyloxycarbonylmethyl)(p-tolyl)bromide) or two ((butyloxycarbonylmethyl)(3,5-xylyl)osphonium bromide) methyl substituents in the phenyl groups. The methylation enormously augmented both protonophoric activity of the ylides on planar bilayer lipid membrane (BLM) and uncoupling of mammalian mitochondria, which correlated with strongly accelerated flip-flop of their cationic precursors across the BLM.


Assuntos
Mitocôndrias Hepáticas , Fósforo , Animais , Mitocôndrias Hepáticas/metabolismo , Fósforo/metabolismo , Ésteres/metabolismo , Brometos/metabolismo , Metilação , Bicamadas Lipídicas/metabolismo , Mamíferos
2.
Biochemistry (Mosc) ; 89(2): 212-222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622091

RESUMO

Quinone derivatives of triphenylphosphonium have proven themselves to be effective geroprotectors and antioxidants that prevent oxidation of cell components with participation of active free radicals - peroxide (RO2·), alkoxy (RO·), and alkyl (R·) radicals, as well as reactive oxygen species (superoxide anion, singlet oxygen). Their most studied representatives are derivatives of plastoquinone (SkQ1) and ubiquinone (MitoQ), which in addition to antioxidant properties also have a strong antibacterial effect. In this study, we investigated antibacterial properties of other quinone derivatives based on decyltriphenylphosphonium (SkQ3, SkQT, and SkQThy). We have shown that they, just like SkQ1, inhibit growth of various Gram-positive bacteria at micromolar concentrations, while being less effective against Gram-negative bacteria, which is associated with recognition of the triphenylphosphonium derivatives by the main multidrug resistance (MDR) pump of Gram-negative bacteria, AcrAB-TolC. Antibacterial action of SkQ1 itself was found to be dependent on the number of bacterial cells. It is important to note that the cytotoxic effect of SkQ1 on mammalian cells was observed at higher concentrations than the antibacterial action, which can be explained by (i) the presence of a large number of membrane organelles, (ii) lower membrane potential, (iii) spatial separation of the processes of energy generation and transport, and (iv) differences in the composition of MDR pumps. Differences in the cytotoxic effects on different types of eukaryotic cells may be associated with the degree of membrane organelle development, energy status of the cell, and level of the MDR pump expression.


Assuntos
Antineoplásicos , Benzoquinonas , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Antioxidantes/farmacologia , Compostos Organofosforados/farmacologia , Plastoquinona/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Antineoplásicos/farmacologia , Mamíferos/metabolismo
3.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892325

RESUMO

Mitochondria-targeted antioxidants (MTAs) have been studied quite intensively in recent years as potential therapeutic agents and vectors for the delivery of other active substances to mitochondria and bacteria. Their most studied representatives are MitoQ and SkQ1, with its fluorescent rhodamine analog SkQR1, a decyl ester of rhodamine 19 carrying plastoquinone. In the present work, we observed a pronounced antibacterial action of SkQR1 against Gram-positive bacteria, but virtually no effect on Gram-negative bacteria. The MDR pump AcrAB-TolC, known to expel SkQ1, did not recognize and did not pump out SkQR1 and dodecyl ester of rhodamine 19 (C12R1). Rhodamine 19 butyl (C4R1) and ethyl (C2R1) esters more effectively suppressed the growth of ΔtolC Escherichia coli, but lost their potency with the wild-type E. coli pumping them out. The mechanism of the antibacterial action of SkQR1 may differ from that of SkQ1. The rhodamine derivatives also proved to be effective antibacterial agents against various Gram-positive species, including Staphylococcus aureus and Mycobacterium smegmatis. By using fluorescence correlation spectroscopy and fluorescence microscopy, SkQR1 was shown to accumulate in the bacterial membrane. Thus, the presentation of SkQR1 as a fluorescent analogue of SkQ1 and its use for visualization should be performed with caution.


Assuntos
Antibacterianos , Ésteres , Testes de Sensibilidade Microbiana , Rodaminas , Antibacterianos/farmacologia , Antibacterianos/química , Rodaminas/química , Rodaminas/farmacologia , Ésteres/química , Ésteres/farmacologia , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Plastoquinona/química , Bactérias Gram-Positivas/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Corantes Fluorescentes/química
4.
Arch Biochem Biophys ; 746: 109735, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37652149

RESUMO

The popular fungicide fluazinam is known to exhibit an unusual cyclic pattern of the protonophoric uncoupling activity in isolated rat liver mitochondria (RLM), with membrane deenergization followed by spontaneous recoupling in the minute scale, which is associated with glutathione conjugation of fluazinam catalyzed by glutathione-S-transferase (GST). Here, we compare the fluazinam effect on RLM with that on rat kidney (RKM) and heart (RHM) mitochondria by monitoring three bioenergetic parameters: oxygen consumption rate, mitochondrial membrane potential and reduction of nucleotides. Only in RLM, the uncoupling activity of fluazinam was transient, i.e. disappeared in a few minutes, whereas in RKM and RHM it was stable in this time scale. We attribute this difference to the increased activity of mitochondrial GST in liver. We report data on the detection of glutathione-fluazinam conjugates by mass-spectrometry, thin layer chromatography and capillary electrophoresis after incubation of fluazinam with RLM but not with RKM, which supports the assumption of the tissue specificity of the conjugation.


Assuntos
Fungicidas Industriais , Animais , Ratos , Fígado , Mitocôndrias , Glutationa , Glutationa Transferase
5.
Phys Chem Chem Phys ; 25(5): 3752-3757, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644888

RESUMO

The linear 15-mer peptide gramicidin A (gA) produced by Bacillus brevis is known to form the simplest natural ion channel in lipid membranes representing a head-to-head transmembrane dimer. Its incorporation into a planar lipid bilayer manifests itself in regular electrical current transitions. If two gA subunits are tightly connected by a water-soluble, flexible linker of a certain length, the current transitions become heterogeneous: in a part of them, the amplitude is almost twofold higher than that of a single channel, thereby demonstrating the synchronous opening of two single channels. The lifetime, i.e. the open-state duration, of this dual channel is by several orders of magnitude longer than that of the single channel. Here, we used the ideas of the theory of excitons to hypothesize about the mechanism of synchronous opening and closing of two adjacent channels. Two independent (uncoupled) single channels can be described by two independent conformational coordinates q1 and q2, while two closely located channels can exhibit collective behavior, if the coupling between them produces mixing of the individual states (q1,0) and (0,q2). We suppose that a similar phenomenon can occur not only with synthetic derivatives of gA, but also with such natural channel-forming peptide antibiotics and toxins as alamethicin and syringomycin. In particular, channel clustering observed with these peptides may be also associated with formation of collective conductance states, resulting from mixing of their monomeric states, which allows us to explain the fact that clusters of these channels transmit ions and nonelectrolytes of the same size as the original single channels.


Assuntos
Gramicidina , Canais Iônicos , Gramicidina/química , Canais Iônicos/química , Alameticina/metabolismo , Conformação Molecular , Bicamadas Lipídicas/química
6.
Biochemistry (Mosc) ; 88(10): 1571-1579, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105025

RESUMO

In this work, TcaR rhodopsin from the cyanobacterium Tolypothrix campylonemoides was characterized. Analysis of the amino acid sequence of TcaR revealed that this protein possesses a TSD motif that differs by only one amino acid from the TSA motif of the known halorhodopsin chloride pump. The TcaR protein was expressed in E. coli, purified, and incorporated into proteoliposomes and nanodiscs. Functional activity was measured by electric current generation through the planar bilayer lipid membranes (BLMs) with proteoliposomes adsorbed on one side of the membrane surface, as well as by fluorescence using the voltage-dependent dye oxonol VI. We have shown that TcaR rhodopsin functions as a powerful anion pump. Our results show that the novel microbial anion transporter, TcaR, deserves deeper investigation and may be of interest both for fundamental studies of membrane proteins and as a tool for optogenetics.


Assuntos
Proteínas de Transporte de Ânions , Cianobactérias , Rodopsina/química , Escherichia coli/metabolismo , Cianobactérias/metabolismo
7.
Arch Biochem Biophys ; 728: 109366, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35878680

RESUMO

An impressive body of evidence has been accumulated now on sound beneficial effects of mitochondrial uncouplers in struggling with the most dangerous pathologies such as cancer, infective diseases, neurodegeneration and obesity. To increase their efficacy while gaining further insight in the mechanism of the uncoupling action has been remaining a challenge. Encouraged by our previous promising results on lipophilic derivatives of 7-hydroxycoumarin-4-acetic acid (UB-4 esters), here, we use a 7-hydroxycoumarin-3-carboxylic acid scaffold to synthesize a new series of 7-hydroxycoumarin (umbelliferone, UB)-derived uncouplers of oxidative phosphorylation - alkyl esters of umbelliferone-3-carboxylic acid (UB-3 esters) with varying carbon chain length. Compared to the UB-4 derivatives, UB-3 esters proved to be stronger uncouplers: the most effective of them caused a pronounced increase in the respiration rate of isolated rat heart mitochondria (RHM) at submicromolar concentrations. Both of these series of UB derivatives exhibited a striking difference between their uncoupling patterns in mitochondria isolated from liver and heart or kidney, namely: a pronounced but transient decrease in membrane potential, followed by its recovery, was observed after the addition of these compounds to isolated rat liver mitochondria (RLM), while the depolarization of RHM and rat kidney mitochondria (RKM) was rather stable under the same conditions. Interestingly, partial reversal of this depolarization in RHM and RKM was caused by carboxyatractyloside, an inhibitor of ATP/ADP translocase, thereby pointing to the involvement of this mitochondrial membrane protein in the uncoupling activity of both UB-3 and UB-4 esters. The fast membrane potential recovery in RLM uncoupled by the addition of the UB esters was apparently associated with hydrolysis of these compounds, catalyzed by mitochondrial aldehyde dehydrogenase (ALDH2), being in high abundance in liver compared to other tissues. Protonophoric properties of the UB derivatives in isolated mitochondria were confirmed by measurements of RHM swelling in the presence of potassium acetate. In model bilayer lipid membranes (liposomes), proton-carrying activity of UB-3 esters was demonstrated by measuring fluorescence response of the pH-dependent dye pyranine. Electrophysiological experiments on identified neurons from Lymnaea stagnalis demonstrated low neurotoxicity of UB-3 esters. Resazurin-based cell viability assay showed low toxicity of UB-3 esters to HEK293 cells and primary human fibroblasts. Thus, the present results enable us to consider UB-3 esters as effective tissue-specific protonophoric mitochondrial uncouplers.


Assuntos
Translocases Mitocondriais de ADP e ATP , Fosforilação Oxidativa , Trifosfato de Adenosina , Aldeído-Desidrogenase Mitocondrial , Animais , Ésteres , Células HEK293 , Humanos , Mitocôndrias Cardíacas , Mitocôndrias Hepáticas , Ratos , Umbeliferonas , Desacopladores
8.
Biochemistry (Mosc) ; 87(8): 812-822, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36171648

RESUMO

Pyrrolomycins C (Pyr_C) and D (Pyr_D) are antibiotics produced by Actinosporangium and Streptomyces. The mechanism of their antimicrobial activity consists in depolarization of bacterial membrane, leading to the suppression of bacterial bioenergetics through the uncoupling of oxidative phosphorylation, which is based on the protonophore action of these antibiotics [Valderrama et al., Antimicrob. Agents Chemother. (2019) 63, e01450]. Here, we studied the effect of pyrrolomycins on the isolated rat liver mitochondria. Pyr_C was found to be more active than Pyr_D and uncoupled mitochondria in the submicromolar concentration range, which was observed as the mitochondrial membrane depolarization and stimulation of mitochondrial respiration. In the case of mitoplasts (isolated mitochondria with impaired outer membrane integrity), the difference in the action of Pyr_C and Pyr_D was significantly less pronounced. By contrast, in inverted submitochondrial particles (SMPs), Pyr_D was more active as an uncoupler, which caused collapse of the membrane potential even at the nanomolar concentrations. The same ratio of the protonophoric activity of Pyr_D and Pyr_C was obtained by us on liposomes loaded with the pH indicator pyranine. The protonophore activity of Pyr_D in the planar bilayer lipid membranes (BLMs) was maximal at ~pH 9, i.e., at pH values close to pKa of this compound. Pyr_D functions as a typical anionic protonophore; its activity in the BLM could be reduced by the addition of the dipole modifier phloretin. The difference between the protonophore activity of Pyr_C and Pyr_D in the mitochondria and BLMs can be attributed to a higher ability of Pyr_C to penetrate the outer mitochondrial membrane.


Assuntos
Antibacterianos , Lipossomos , Animais , Antibacterianos/química , Bicamadas Lipídicas/química , Mitocôndrias , Mitocôndrias Hepáticas/metabolismo , Floretina/metabolismo , Floretina/farmacologia , Ratos , Desacopladores/farmacologia
9.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555847

RESUMO

Usnic acid (UA), a unique lichen metabolite, is a protonophoric uncoupler of oxidative phosphorylation, widely known as a weight-loss dietary supplement. In contrast to conventional proton-shuttling mitochondrial uncouplers, UA was found to carry protons across lipid membranes via the induction of an electrogenic proton exchange for calcium or magnesium cations. Here, we evaluated the ability of various divalent metal cations to stimulate a proton transport through both planar and vesicular bilayer lipid membranes by measuring the transmembrane electrical current and fluorescence-detected pH gradient dissipation in pyranine-loaded liposomes, respectively. Thus, we obtained the following selectivity series of calcium, magnesium, zinc, manganese and copper cations: Zn2+ > Mn2+ > Mg2+ > Ca2+ >> Cu2+. Remarkably, Cu2+ appeared to suppress the UA-mediated proton transport in both lipid membrane systems. The data on the divalent metal cation/proton exchange were supported by circular dichroism spectroscopy of UA in the presence of the corresponding cations.


Assuntos
Cálcio , Prótons , Cálcio/metabolismo , Magnésio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Bicamadas Lipídicas/química , Cátions/metabolismo , Cátions Bivalentes/metabolismo
10.
Biophys J ; 120(23): 5309-5321, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34715080

RESUMO

Gramicidin A (gA) is a hydrophobic pentadecapeptide readily incorporating into a planar bilayer lipid membrane (BLM), thereby inducing a large macroscopic current across the BLM. This current results from ion-channel formation due to head-to-head transbilayer dimerization of gA monomers with rapidly established monomer-dimer equilibrium. Any disturbance of the equilibrium, e.g., by sensitized photoinactivation of a portion of gA monomers, causes relaxation toward a new equilibrium state. According to previous studies, the characteristic relaxation time of the gA-mediated electric current decreases as the current increases upon elevating the gA concentration in the membrane. Here, we report data on the current relaxation kinetics for gA analogs with N-terminal valine replaced by glycine or tyrosine. Surprisingly, the relaxation time increased rather than decreased upon elevation of the total membrane conductance induced by these gA analogs, thus contradicting the classical kinetic scheme. We developed a general theoretical model that accounts for lateral interaction of monomers and dimers mediated by membrane elastic deformations. The modified kinetic scheme of the gramicidin dimerization predicts the reverse dependence of the relaxation time on membrane conductance for gA analogs, with a decreased dimerization constant that is in a good agreement with our experimental data. The equilibration process may be also modulated by incorporation of other peptides ("impurities") into the lipid membrane.


Assuntos
Gramicidina , Bicamadas Lipídicas , Dimerização , Gramicidina/metabolismo , Canais Iônicos/metabolismo , Peptídeos
11.
Biochem Biophys Res Commun ; 548: 74-77, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631678

RESUMO

Peroxidase activity of cytochrome c (cyt c)/cardiolipin (CL) complex is supposed to be involved in the initiation of apoptosis via peroxidative induction of mitochondrial membrane permeabilization. As cyt c binding to CL-containing membranes is at least partially associated with electrostatic protein/lipid interaction, we screened single-point mutants of horse heart cyt c with various substitutions of lysine at position 72, considered to play a significant role in both the binding and peroxidase activity of the protein. Contrary to expectations, K72A, K72R and K72L substitutions exerted slight effects on both the cyt c binding to CL-containing liposomal membranes and the cyt c/H2O2-induced calcein leakage from liposomes, used here as a membrane permeabilization assay. Both the binding and permeabilization were decreased to various extents, but not significantly, in the case of K72E and K72N mutants. A drastic difference was found between the sequence of the permeabilizing activities of the cyt c variants and the previously described order of their proapoptotic activities (Chertkova et al., 2008).


Assuntos
Substituição de Aminoácidos , Apoptose , Citocromos c/metabolismo , Cavalos/metabolismo , Bicamadas Lipídicas/metabolismo , Lisina/genética , Miocárdio/metabolismo , Animais , Lipossomos/metabolismo , Permeabilidade , Ligação Proteica , Fatores de Tempo
12.
Biochemistry (Mosc) ; 86(4): 409-419, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33941063

RESUMO

The studies of the functional properties of retinal-containing proteins often include experiments in model membrane systems, e.g., measurements of electric current through planar bilayer lipid membranes (BLMs) with proteoliposomes adsorbed on one of the membrane surfaces. However, the possibilities of this method have not been fully explored yet. We demonstrated that the voltage dependence of stationary photocurrents for two light-sensitive proteins, bacteriorhodopsin (bR) and channelrhodopsin 2 (ChR2), in the presence of protonophore had very different characteristics. In the case of the bR (proton pump), the photocurrent through the BLM did not change direction when the polarity of the applied voltage was switched. In the case of the photosensitive channel protein ChR2, the photocurrent increased with the increase in voltage and the current polarity changed with the change in the voltage polarity. The protonophore 4,5,6,7-tetrachloro-2-trifluoromethyl benzimidazole (TTFB) was more efficient in the maximizing stationary photocurrents. In the presence of carbonyl cyanide-m-chlorophenylhydrazone (CCCP), the amplitude of the measured photocurrents for bR significantly decreased, while in the case of ChR2, the photocurrents virtually disappeared. The difference between the effects of TTFB and CCCP was apparently due to the fact that, in contrast to TTFB, CCCP transfers protons across the liposome membranes with a higher rate than through the decane-containing BLM used as a surface for the proteoliposome adsorption.


Assuntos
Bacteriorodopsinas/metabolismo , Channelrhodopsins/metabolismo , Bicamadas Lipídicas/metabolismo , Transporte de Íons , Proteolipídeos
13.
Biochem Biophys Res Commun ; 530(1): 29-34, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828301

RESUMO

Bicarbonate has been known to modulate activities of various mitochondrial enzymes such as ATPase and soluble adenylyl cyclase. Here, we found that the ability of conventional protonophoric uncouplers, such as 2,4-dinitrophenol (DNP), carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), but not that of the new popular uncoupler BAM15, to decrease mitochondrial membrane potential was significantly diminished in the presence of millimolar concentrations of bicarbonate. Thus, the depolarizing activity of DNP and FCCP in mitochondria could be sensitive to the local concentration of bicarbonate in cells and tissues. However, bicarbonate could not restore the ATP synthesis suppressed by DNP or CCCP in mitochondria. Bicarbonate neither altered the depolarizing action of DNP and FCCP on proteoliposomes with reconstituted cytochrome c oxidase, nor affected the protonophoric activity of DNP and FCCP in artificial lipid membranes as measured with pyranine-loaded liposomes, thereby showing that the bicarbonate-induced reversal of the depolarizing action of DNP and FCCP on mitochondria did not result from direct interaction of bicarbonate with the uncouplers.


Assuntos
Bicarbonatos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Desacopladores/farmacologia , 2,4-Dinitrofenol/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Ratos
14.
Biophys J ; 117(10): 1845-1857, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31706565

RESUMO

Genipin, a natural compound from Gardenia jasminoides, is a well-known compound in Chinese medicine that is used for the treatment of cancer, inflammation, and diabetes. The use of genipin in classical medicine is hindered because of its unknown molecular mechanisms of action apart from its strong cross-linking ability. Genipin is increasingly applied as a specific inhibitor of proton transport mediated by mitochondrial uncoupling protein 2 (UCP2). However, its specificity for UCP2 is questionable, and the underlying mechanism behind its action is unknown. Here, we investigated the effect of genipin in different systems, including neuroblastoma cells, isolated mitochondria, isolated mitochondrial proteins, and planar lipid bilayer membranes reconstituted with recombinant proteins. We revealed that genipin activated dicarboxylate carrier and decreased the activity of UCP1, UCP3, and complex III of the respiratory chain alongside with UCP2 inhibition. Based on competitive inhibition experiments, the use of amino acid blockers, and site-directed mutagenesis of UCP1, we propose a mechanism of genipin's action on UCPs. At low concentrations, genipin binds to arginine residues located in the UCP funnel, which leads to a decrease in UCP's proton transporting function in the presence of long chain fatty acids. At concentrations above 200 µM, the inhibitory action of genipin on UCPs is overlaid by increased nonspecific membrane conductance due to the formation of protein-genipin aggregates. Understanding the concentration-dependent mechanism of genipin action in cells will allow its targeted application as a drug in the above-mentioned diseases.


Assuntos
Iridoides/farmacologia , Proteínas Mitocondriais/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Transporte de Íons/efeitos dos fármacos , Íons , Iridoides/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Prótons , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 2/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-31405863

RESUMO

The escalating burden of antibiotic drug resistance necessitates research into novel classes of antibiotics and their mechanism of action. Pyrrolomycins are a family of potent natural product antibiotics with nanomolar activity against Gram-positive bacteria, yet with an elusive mechanism of action. In this work, we dissect the apparent Gram-positive specific activity of pyrrolomycins and show that Gram-negative bacteria are equally sensitive to pyrrolomycins when drug efflux transporters are removed and that albumin in medium plays a large role in pyrrolomycin activity. The selection of resistant mutants allowed for the characterization and validation of a number of mechanisms of resistance to pyrrolomycins in both Staphylococcus aureus and an Escherichia coli ΔtolC mutant, all of which appear to affect compound penetration rather than being target associated. Imaging of the impact of pyrrolomycin on the E. coli ΔtolC mutant using scanning electron microscopy showed blebbing of the bacterial cell wall often at the site of bacterial division. Using potentiometric probes and an electrophysiological technique with an artificial bilayer lipid membrane, it was demonstrated that pyrrolomycins C and D are very potent membrane-depolarizing agents, an order of magnitude more active than conventional carbonyl cyanide m-chlorophenylhydrazone (CCCP), specifically disturbing the proton gradient and uncoupling oxidative phosphorylation via protonophoric action. This work clearly unveils the until-now-elusive mechanism of action of pyrrolomycins and explains their antibiotic activity as well as mechanisms of innate and acquired drug resistance in bacteria.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Pirróis/química , Pirróis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Staphylococcus aureus/ultraestrutura , Relação Estrutura-Atividade
16.
Bioconjug Chem ; 30(9): 2435-2443, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31374173

RESUMO

2-(2-Hydroxyaryl)alkenylphosphonium salts (here coined as PPR) representing derivatives of quaternary phosphonium with two phenyl (P) and one alkyl (R) substituents linked through alkenyl bridge to substituted phenol were applied here to planar bilayer lipid membranes (BLM), isolated mitochondria, and cell culture. PPR with six carbon atoms in R (PP6) induced proton-selective currents across BLM and caused mitochondrial uncoupling. In particular, PP6 at submicromolar concentrations accelerated respiration, decreased membrane potential, and reduced ATP synthesis in isolated rat liver mitochondria (RLM). Methylation of a hydroxyl group substantially suppressed the protonophoric activity of PP6 on BLM and its uncoupling potency in RLM. Of note, the methylated derivative PP6-OMe was synthesized here via a new synthetic route including cyclization of PP6 with subsequent ring opening. PPR were considered as protonophoric uncouplers of a zwitterionic type, capable of penetrating membranes both as a zwitterion composed of a deprotonated phenol and a cationic quaternary phosphonium, and as a protonated cation. The protonophoric and uncoupling properties of PPR found here were speculated to account for their strong antibacterial activity described previously.


Assuntos
Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Prótons , Trifosfato de Adenosina/biossíntese , Animais , Potenciais da Membrana/efeitos dos fármacos , Metilação , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ratos
17.
Phys Chem Chem Phys ; 21(42): 23355-23363, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31621727

RESUMO

Penetrating cations are widely used for the design of bioactive mitochondria-targeted compounds. The introduction of various substituents into the phenyl rings of dodecyltriphenylphosphonium and the measurement of the flip-flop of the synthesized cations by the current relaxation method revealed that methyl groups accelerated significantly the cation penetration through the lipid membrane, depending on the number of groups introduced. However, halogenation slowed down the penetration of the analogues. This result is strictly opposite to the flip-flop acceleration observed for halogenated tetraphenylborate anions. Density functional theory and the polarizable continuum solvent model were used to calculate the solvation energies of methyltriphenylphosphonium and methyltriphenylborate analogues. A good agreement was demonstrated between the difference in the free energy of ion solvation in water and octane and the absolute value of the central free energy barrier estimated from experimental data. Our results reveal that increasing the size of the lipophilic ion can lead to both acceleration and deceleration of the transmembrane flip-flop rate depending on the substituent and sign of the ion. This finding also emphasizes the different nature of ion-water interactions for structurally similar substituted hydrophobic anions and cations.


Assuntos
Halogênios/química , Bicamadas Lipídicas/química , Teoria da Densidade Funcional , Eletricidade , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Compostos Organofosforados/química , Solventes/química , Tetrafenilborato/química , Água/química
18.
Biophys J ; 115(3): 514-521, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30031539

RESUMO

Voltage-dependent translocation of a series of cationic rhodamine B derivatives differing in n-alkyl chain length (ethyl, butyl, octyl, dodecyl, octadecyl) from one lipid monolayer to another was studied by measuring electrical current relaxation after a voltage jump on a planar bilayer phosphatidylcholine (PC) membrane. The rate of the translocation decreased in the following series of lipids: diphytanyl-PC > dioleyl-PC > diphytanoyl-PC > dierucoyl-PC. For all the lipids studied, the rate increased with lengthening of the hydrocarbon chain of the rhodamine derivatives, with the increase being most pronounced for the compounds having a short alkyl chain. The results could be well explained by involvement of molecule reorientations in the process of transmembrane flip-flop of the hydrophobic membrane-bound compounds. However, an impact of membrane dipole potential on the translocation rate could not be excluded, because the dipole potential could contribute to the energy barrier for translocation of the compounds located at different depths in the water-membrane interface. Based on the data obtained, a difference in the dipole potential of ester diphytanoyl-PC membranes with respect to ether diphytanyl-PC was estimated to be 108 mV, highlighting the contribution of a layer of oriented carbonyl groups of the lipids to the membrane dipole potential.


Assuntos
Ésteres/química , Rodaminas/química , Alquilação , Bicamadas Lipídicas/química
19.
Biophys J ; 115(3): 478-493, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30049405

RESUMO

Gramicidin A (gA) is a short ß-helical peptide known to form conducting channels in lipid membranes because of transbilayer dimerization. The gA conducting dimer, being shorter than the lipid bilayer thickness, deforms the membrane in its vicinity, and the bilayer elastic energy contributes to the gA dimer formation energy. Likewise, membrane incorporation of a gA monomer, which is shorter than the lipid monolayer thickness, creates a void, thereby forcing surrounding lipid molecules to tilt to fill it. The energy of membrane deformation was calculated in the framework of the continuum elasticity theory, taking into account splay, tilt, lateral stretching/compression, Gaussian splay deformations, and external membrane tension. We obtained the interaction energy profiles for two gA monomers located either in the same or in the opposite monolayers. The profiles demonstrated the long-range attraction and short-range repulsion behavior of the monomers resulting from the membrane deformation. Analysis of the profile features revealed conditions under which clusters of gA monomers would not dissipate because of diffusion. The calculated dependence of the dimer formation and decay energy barriers on the membrane elastic properties was in good agreement with the available experimental data and suggested an explanation for a hitherto contentious phenomenon.


Assuntos
Membrana Celular/química , Elasticidade , Gramicidina/química , Bicamadas Lipídicas/química , Multimerização Proteica , Probabilidade , Estrutura Quaternária de Proteína
20.
Biochim Biophys Acta Biomembr ; 1860(5): 1000-1007, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29317196

RESUMO

The formerly widely used broad-spectrum biocide triclosan (TCS) has now become a subject of special concern due to its accumulation in the environment and emerging diverse toxicity. Despite the common opinion that TCS is an uncoupler of oxidative phosphorylation in mitochondria, there have been so far no studies of protonophoric activity of this biocide on artificial bilayer lipid membranes (BLM). Yet only few works have indicated the relationship between TCS impacts on mitochondria and nerve cell functioning. Here, we for the first time report data on a high protonophoric activity of TCS on planar BLM. TCS proved to be a more effective protonophore on planar BLM, than classical uncouplers. Correlation between a strong depolarizing effect of TCS on bacterial membranes and its bactericidal action on Bacillus subtilis might imply substantial contribution of TCS protonophoric activity to its antimicrobial efficacy. Protonophoric activity of TCS, monitored by proton-dependent mitochondrial swelling, resulted in Ca2+ efflux from mitochondria. A comparison of TCS effects on molluscan neurons with those of conventional mitochondrial uncouplers allowed us to ascribe the TCS-induced neuronal depolarization and suppression of excitability to the consequences of mitochondrial deenergization. Also similar to the action of common uncouplers, TCS caused a pronounced increase in frequency of miniature end-plate potentials at neuromuscular junctions. Thus, the TCS-induced mitochondrial uncoupling could alter neuronal function through distortion of Ca2+ homeostasis.


Assuntos
Cálcio/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Prótons , Triclosan/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Lymnaea , Potenciais da Membrana/fisiologia , Camundongos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Mitocôndrias Hepáticas/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos , Dilatação Mitocondrial/fisiologia , Fosforilação Oxidativa/efeitos dos fármacos , Ratos , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA